Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 893
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(24): e114054, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37933600

RESUMEN

Cristae are high-curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous lipid-based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the inner mitochondrial membrane against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. This model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that cardiolipin is essential in low-oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of cardiolipin is dependent on the surrounding lipid and protein components of the IMM.


Asunto(s)
Cardiolipinas , Lipidómica , Cardiolipinas/metabolismo , Membranas Mitocondriales/metabolismo , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo
2.
Nature ; 596(7870): 68-73, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34349290

RESUMEN

Key to our understanding of how electrons behave in crystalline solids is the band structure that connects the energy of electron waves to their wavenumber. Even in phases of matter with only short-range order (liquid or amorphous solid), the coherent part of electron waves still has a band structure. Theoretical models for the band structure of liquid metals were formulated more than five decades ago1-15, but, so far, band-structure renormalization and the pseudogap induced by resonance scattering have remained unobserved. Here we report the observation of the unusual band structure at the interface of a crystalline insulator (black phosphorus) and disordered dopants (alkali metals). We find that a conventional parabolic band structure of free electrons bends back towards zero wavenumber with a pseudogap of 30-240 millielectronvolts from the Fermi level. This is wavenumber renormalization caused by resonance scattering, leading to the formation of quasi-bound states in the scattering potential of alkali-metal ions. The depth of this potential tuned by different kinds of disordered alkali metal (sodium, potassium, rubidium and caesium) allows the classification of the pseudogap of p-wave and d-wave resonance. Our results may provide a clue to the puzzling spectrum of various crystalline insulators doped by disordered dopants16-20, such as the waterfall dispersion observed in copper oxides.

3.
Mol Cell ; 69(3): 398-411.e6, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395062

RESUMEN

The inflammatory response mediated by nuclear factor κB (NF-κB) signaling is essential for host defense against pathogens. Although the regulatory mechanism of NF-κB signaling has been well studied, the molecular basis for epigenetic regulation of the inflammatory response is poorly understood. Here we identify a new signaling axis of PKCα-LSD1-NF-κB, which is critical for activation and amplification of the inflammatory response. In response to excessive inflammatory stimuli, PKCα translocates to the nucleus and phosphorylates LSD1. LSD1 phosphorylation is required for p65 binding and facilitates p65 demethylation, leading to enhanced stability. In vivo genetic analysis using Lsd1SA/SA mice with ablation of LSD1 phosphorylation and chemical approaches in wild-type mice with inhibition of PKCα or LSD1 activity show attenuated sepsis-induced inflammatory lung injury and mortality. Together, we demonstrate that the PKCα-LSD1-NF-κB signaling cascade is crucial for epigenetic control of the inflammatory response, and targeting this signaling could be a powerful therapeutic strategy for systemic inflammatory diseases, including sepsis.


Asunto(s)
Histona Demetilasas/metabolismo , Proteína Quinasa C/metabolismo , Animales , Núcleo Celular/metabolismo , Epigénesis Genética/genética , Histona Demetilasas/genética , Inflamación/metabolismo , Metilación , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Fosforilación , Proteína Quinasa C/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
Nucleic Acids Res ; 52(7): 3794-3809, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38340339

RESUMEN

Meiotic recombination is initiated by programmed double-strand breaks (DSBs). Studies in Saccharomyces cerevisiae have shown that, following rapid resection to generate 3' single-stranded DNA (ssDNA) tails, one DSB end engages a homolog partner chromatid and is extended by DNA synthesis, whereas the other end remains associated with its sister. Then, after regulated differentiation into crossover- and noncrossover-fated types, the second DSB end participates in the reaction by strand annealing with the extended first end, along both pathways. This second-end capture is dependent on Rad52, presumably via its known capacity to anneal two ssDNAs. Here, using physical analysis of DNA recombination, we demonstrate that this process is dependent on direct interaction of Rad52 with the ssDNA binding protein, replication protein A (RPA). Furthermore, the absence of this Rad52-RPA joint activity results in a cytologically-prominent RPA spike, which emerges from the homolog axes at sites of crossovers during the pachytene stage of the meiotic prophase. Our findings suggest that this spike represents the DSB end of a broken chromatid caused by either the displaced leading DSB end or the second DSB end, which has been unable to engage with the partner homolog-associated ssDNA. These and other results imply a close correspondence between Rad52-RPA roles in meiotic recombination and mitotic DSB repair.


Asunto(s)
Intercambio Genético , Roturas del ADN de Doble Cadena , Meiosis , Proteína Recombinante y Reparadora de ADN Rad52 , Proteína de Replicación A , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , Meiosis/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Recombinación Genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Recombinación Homóloga/genética
5.
Mol Psychiatry ; 29(7): 1951-1967, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38355784

RESUMEN

Comparisons and linkage between multiple imaging scales are essential for neural circuit connectomics. Here, we report 20 new recombinant rabies virus (RV) vectors that we have developed for multi-scale and multi-modal neural circuit mapping tools. Our new RV tools for mesoscale imaging express a range of improved fluorescent proteins. Further refinements target specific neuronal subcellular locations of interest. We demonstrate the discovery power of these new tools including the detection of detailed microstructural changes of rabies-labeled neurons in aging and Alzheimer's disease mouse models, live imaging of neuronal activities using calcium indicators, and automated measurement of infected neurons. RVs that encode GFP and ferritin as electron microscopy (EM) and fluorescence microscopy reporters are used for dual EM and mesoscale imaging. These new viral variants significantly expand the scale and power of rabies virus-mediated neural labeling and circuit mapping across multiple imaging scales in health and disease.


Asunto(s)
Neuronas , Virus de la Rabia , Animales , Ratones , Neuronas/virología , Neuronas/metabolismo , Encéfalo/virología , Conectoma/métodos , Mapeo Encefálico/métodos , Enfermedad de Alzheimer/virología , Enfermedad de Alzheimer/patología , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Vectores Genéticos , Ratones Endogámicos C57BL , Microscopía Fluorescente/métodos , Rabia/virología , Humanos , Red Nerviosa/virología , Red Nerviosa/metabolismo
6.
Cell ; 143(6): 924-37, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21145459

RESUMEN

Meiotic double-strand break (DSB)-initiated recombination must occur between homologous maternal and paternal chromosomes ("homolog bias"), even though sister chromatids are present. Through physical recombination analyses, we show that sister cohesion, normally mediated by meiotic cohesin Rec8, promotes "sister bias"; that meiosis-specific axis components Red1/Mek1kinase counteract this effect, thereby satisfying an essential precondition for homolog bias; and that other components, probably recombinosome-related, directly ensure homolog partner selection. Later, Rec8 acts positively to ensure maintenance of bias. These complexities mirror opposing dictates for global sister cohesion versus local separation and differentiation of sisters at recombination sites. Our findings support DSB formation within axis-tethered recombinosomes containing both sisters and ensuing programmed sequential release of "first" and "second" DSB ends. First-end release would create a homology-searching "tentacle." Rec8 and Red1/Mek1 also independently license recombinational progression and abundantly localize to different domains. These domains could comprise complementary environments that integrate inputs from DSB repair and mitotic chromosome morphogenesis into the complete meiotic program.


Asunto(s)
Intercambio Genético , Meiosis , Saccharomyces cerevisiae/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/metabolismo , Roturas del ADN de Doble Cadena , MAP Quinasa Quinasa 1/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Intercambio de Cromátides Hermanas
7.
Mol Cell ; 65(5): 781-785, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28257699

RESUMEN

Autophagy is an evolutionarily conserved catabolic process. Although the components of autophagy in cytoplasm have been well-studied, the molecular basis for the epigenetic regulation of autophagy is poorly understood. It is becoming more important to propose a "whole-cell view" of autophagy embracing both cytoplasmic and nuclear events. Thus, it is great timing to summarize current status and discuss future direction.


Asunto(s)
Autofagia , Núcleo Celular/metabolismo , Cromatina/metabolismo , Epigénesis Genética , Histonas/metabolismo , Acetilación , Animales , Autofagia/genética , Cromatina/genética , Ensamble y Desensamble de Cromatina , Humanos , Metilación , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteína Metiltransferasas/metabolismo
8.
Neuroimage ; 297: 120749, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39033787

RESUMEN

Differential diagnosis of acute loss of consciousness (LOC) is crucial due to the need for different therapeutic strategies despite similar clinical presentations among etiologies such as nonconvulsive status epilepticus, metabolic encephalopathy, and benzodiazepine intoxication. While altered functional connectivity (FC) plays a pivotal role in the pathophysiology of LOC, there has been a lack of efforts to develop differential diagnosis artificial intelligence (AI) models that feature the distinctive FC change patterns specific to each LOC cause. Three approaches were applied for extracting features for the AI models: three-dimensional FC adjacency matrices, vectorized FC values, and graph theoretical measurements. Deep learning using convolutional neural networks (CNN) and various machine learning algorithms were implemented to compare classification accuracy using electroencephalography (EEG) data with different epoch sizes. The CNN model using FC adjacency matrices achieved the highest accuracy with an AUC of 0.905, with 20-s epoch data being optimal for classifying the different LOC causes. The high accuracy of the CNN model was maintained in a prospective cohort. Key distinguishing features among the LOC causes were found in the delta and theta brain wave bands. This research advances the understanding of LOC's underlying mechanisms and shows promise for enhancing diagnosis and treatment selection. Moreover, the AI models can provide accurate LOC differentiation with a relatively small amount of EEG data in 20-s epochs, which may be clinically useful.


Asunto(s)
Inteligencia Artificial , Electroencefalografía , Inconsciencia , Humanos , Electroencefalografía/métodos , Inconsciencia/fisiopatología , Femenino , Diagnóstico Diferencial , Masculino , Persona de Mediana Edad , Adulto , Redes Neurales de la Computación , Aprendizaje Profundo , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Anciano , Aprendizaje Automático
9.
J Neuroinflammation ; 21(1): 245, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342323

RESUMEN

Microglia-driven neuroinflammation plays an important role in the development of Alzheimer's disease. Microglia activation is accompanied by the formation and chronic expression of TLR4 inflammarafts, defined as enlarged and cholesterol-rich lipid rafts serving as an assembly platform for TLR4 dimers and complexes of other inflammatory receptors. The secreted apoA-I binding protein (APOA1BP or AIBP) binds TLR4 and selectively targets cholesterol depletion machinery to TLR4 inflammaraft-expressing inflammatory, but not homeostatic microglia. Here we demonstrated that amyloid-beta (Aß) induced formation of TLR4 inflammarafts in microglia in vitro and in the brain of APP/PS1 mice. Mitochondria in Apoa1bp-/- APP/PS1 microglia were hyperbranched and cupped, which was accompanied by increased reactive oxygen species and the dilated endoplasmic reticulum. The size and number of Aß plaques and neuronal cell death were significantly increased, and the animal survival was decreased in Apoa1bp-/-APP/PS1 compared to APP/PS1 female mice. These results suggest that AIBP exerts control of TLR4 inflammarafts and mitochondrial dynamics in microglia and plays a protective role in Alzheimer's disease associated oxidative stress and neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Ratones Transgénicos , Mitocondrias , Receptor Toll-Like 4 , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Microglía/metabolismo , Microglía/patología , Femenino , Ratones Endogámicos C57BL , Ratones Noqueados , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Humanos
10.
Small ; 20(30): e2400828, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38693068

RESUMEN

Efficient support materials are crucial for maximizing the efficacy of nanomaterials in various applications such as energy storage, drug delivery, catalysis, and environmental remediation. However, traditional supports often hinder nanomaterial performance due to their high weight ratio and limited manageability, leading to issues like tube blocking and secondary pollution. To address this, a novel grapefruit-inspired polymeric capsule (GPC) as a promising carrier platform is introduced. The millimeter-scale GPC features a hydrophilic shell and an internal hierarchical microstructure with 80% void volume, providing ample space for encapsulating diverse nanomaterials including metals, polymers, metal-organic frameworks, and silica. Through liquid-phase bottom-up methods, it is successfully loaded Fe2O3, SiO2, polyacrylic acid, and Prussian blue nanomaterials onto the GPC, achieving high mass ratio (1776, 488, 898, and 634 wt.%, respectively). The GPC shell prevents nanomaterial leakage and the influx of suspended solids, while its internal framework enhances structural stability and mass transfer rates. With long-term storage stability, high carrying capacity, and versatile applicability, the GPC significantly enhances the field applicability of nanomaterials.

11.
Small ; : e2404189, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109567

RESUMEN

An ideal dielectric material for microelectronic devices requires a combination of high anisotropic thermal conductivity and low dielectric constant (ɛ') and loss (tan δ). Polymer composites of boron nitride nanotubes (BNNTs), which offer excellent thermal and dielectric properties, show promise for developing these dielectric polymer composites. Herein, a simple method for fabricating polymer/BNNT composites with high directional thermal conductivity and excellent dielectric properties is presented. The nanocomposites with directionally aligned BNNTs are fabricated through melt-compounding and in situ fibrillation, followed by sintering the fibrous nanocomposites. The fabricated nanocomposites show a significant enhancement in thermal properties, with an in-plane thermal conductivity (K‖) of 1.8 Wm-1K-1-a 450% increase-yielding a high anisotropy ratio (K‖/K⊥) of 36, a 1700% improvement over isotropic samples containing only 7.2 vol% BNNT. These samples exhibit a 120% faster in-plane heat dissipation compared to the through-plane within 2 s. Additionally, they display low ɛ' of ≈3.2 and extremely low tan δ of ≈0.014 at 1 kHz. These results indicate that this method provides a new avenue for designing and creating polymer composites with enhanced directional heat dissipation properties along with high K‖, suitable for thermal management applications in electronic packaging, thermal interface materials, and passive cooling systems.

12.
J Clin Microbiol ; 62(7): e0020724, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38888305

RESUMEN

The Panbio COVID-19/Flu A&B Panel (Abbott) is an in vitro diagnostic rapid test designed for the qualitative detection of nucleocapsid proteins SARS-CoV-2 and nucleoprotein influenza A and B antigens in nasal mid-turbinate (NMT) swab specimens from symptomatic individuals meeting COVID-19 and influenza clinical and/or epidemiological criteria. This study, the largest global one to date using fresh samples, aimed to assess the diagnostic sensitivity and specificity of the Panbio COVID-19/Flu A&B Panel in freshly collected NMT swab specimens from individuals suspected of respiratory viral infection consistent with COVID-19 and/or influenza within the first 5 days of symptom onset compared with results obtained with the cobas SARS-CoV-2 and influenza A/B qualitative assay (cobas 6800/8800 systems), which were tested using nasopharyngeal swab samples. A total of 512 evaluable subjects were enrolled in the COVID-19 cohort across 18 sites, and 1,148 evaluable subjects were enrolled in the influenza cohort across 22 sites in the Asia-Pacific, Europe, and the USA. The Panbio COVID-19/Flu A&B Panel demonstrated a sensitivity of 80.4% and a specificity of 99.7% for COVID-19. For influenza A, the sensitivity and specificity rates were 80.6% and 99.3%, respectively. Likewise, for influenza B, the sensitivity and specificity rates were 80.8% and 99.4%, respectively. In conclusion, the Panbio COVID-19/Flu A&B Panel emerges as a suitable rapid test for detecting COVID-19 and influenza in symptomatic subjects across diverse global populations, exhibiting high sensitivity. The assay achieved a sensitivity of 94.4% in samples with Ct ≤24 for COVID-19 and 92.6% in samples with Ct ≤30 for influenza A and B. IMPORTANCE: The Panbio COVID-19/Flu A&B Panel is a suitable rapid test for detecting COVID-19 and influenza in symptomatic subjects across diverse global populations, exhibiting high sensitivity. The assay achieved a sensitivity of 94.0% in samples with Ct ≤24 for COVID-19 and 92.6% in samples with Ct ≤30 for influenza A and B.


Asunto(s)
Antígenos Virales , COVID-19 , Virus de la Influenza A , Virus de la Influenza B , Gripe Humana , SARS-CoV-2 , Sensibilidad y Especificidad , Humanos , COVID-19/diagnóstico , Gripe Humana/diagnóstico , Gripe Humana/virología , Virus de la Influenza B/aislamiento & purificación , Virus de la Influenza B/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Adulto , Persona de Mediana Edad , Femenino , Masculino , Antígenos Virales/análisis , Antígenos Virales/inmunología , Adulto Joven , Adolescente , Anciano , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/inmunología , Niño , Preescolar , Nasofaringe/virología , Prueba de COVID-19/métodos , Lactante , Anciano de 80 o más Años
13.
Artículo en Inglés | MEDLINE | ID: mdl-39237150

RESUMEN

BACKGROUND: Cryptogenic new-onset refractory status epilepticus (cNORSE) currently lacks comprehensive knowledge regarding its clinical dynamics, prognostic factors and treatment guidance. Here we present the longitudinal clinical profiles, predictive factors for outcomes and the optimal duration of immunotherapy in patients with cNORSE. METHODS: This retrospective secondary endpoint analysis investigated patients with cNORSE identified from a prospective autoimmune encephalitis cohort at a national referral centre in Korea. The main outcomes included longitudinal functional scales, seizure frequency and the number of antiseizure medications. Measures encompassed NORSE-related clinical parameters such as the duration of unconsciousness, immunotherapy profiles, cytokine/chemokine analysis, and serial MRI scans. RESULTS: A total of 74 patients with cNORSE were finally analysed (mean age: 38.0±18.2; 36 (48.6%) male). All patients received first-line immunotherapy, and 91.9% (68/74) received second-line immunotherapy. A total of 83.8% (62/74) regained consciousness within a median duration of 30 days (14-56), and 50% (31/62) achieved good outcome (mRS ≤2) at 2 years. Poor 1-year outcomes (mRS ≥3) were predicted by the presence of mesial temporal lobe (mTL) and extra-mTL lesions at 3-month MRI, and prolonged unconsciousness (≥60 days). Those with mTL atrophy exhibited a higher seizure burden post-NORSE. The optimal duration of immunotherapy appeared to be between 18 weeks and 1-year post-NORSE onset. CONCLUSIONS: This study elucidates longitudinal clinical dynamics, functional outcomes, prognostic factors and immunotherapy response in patients with cNORSE. These findings might contribute to a more standardised understanding and clinical decision-making for cNORSE.

14.
BMC Cancer ; 24(1): 397, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553680

RESUMEN

BACKGROUND: High-risk stage III colon cancer has a considerably poorer prognosis than stage II and low-risk stage III colon cancers. Nevertheless, most guidelines recommend similar adjuvant treatment approaches for all these stages despite the dearth of research focusing on high-risk stage III colon cancer and the potential for improved prognosis with intensive adjuvant treatment. Given the the proven efficacy of triplet chemotherapy in metastatic colorectal cancer treatment, the goal of this study is to evaluate the oncologic efficacy and safety of mFOLFIRINOX in comparison to those of the current standard of care, mFOLFOX 6, as an adjuvant treatment for patients diagnosed with high-risk stage III colon cancer after radical resection. METHODS: This multicenter, randomized (1:1), open-label, phase II trial will assess and compare the effectiveness and toxicity of mFOLFIRINOX and mFOLFOX 6 in patients with high-risk stage III colon cancer after radical resection. The goal of the trial is to enroll 312 eligible patients, from 11 institutes, aged between 20 and 70 years, with an Eastern Cooperative Oncology Group (ECOG) performance status of 0-2, or between 70 and 75 with an ECOG performance status of 0. Patients will be randomized into two arms - Arm A, the experimental arm, and Arm B, the reference arm - and will receive 12 cycles of mFOLFIRINOX and mFOLFOX 6 every 2 weeks, respectively. The primary endpoint of this study is the 3-year disease-free survival, and secondary endpoints include the 3-year overall survival and treatment toxicity. DISCUSSION: The Frost trial would help determine the oncologic efficacy and safety of adjuvant triplet chemotherapy for high-risk stage III colon cancers and ultimately improve prognoses. TRIAL REGISTRATION: ClinicalTrials.gov NCT05179889, registered on 17 December 2021.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias del Colon , Adulto , Anciano , Humanos , Persona de Mediana Edad , Adulto Joven , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Quimioterapia Adyuvante , Ensayos Clínicos Fase II como Asunto , Neoplasias del Colon/patología , Supervivencia sin Enfermedad , Estudios Multicéntricos como Asunto , Supervivencia sin Progresión , Ensayos Clínicos Controlados Aleatorios como Asunto , Fluorouracilo/uso terapéutico
15.
J Sleep Res ; : e14303, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39098007

RESUMEN

The pathophysiology of restless legs syndrome (RLS) remains incompletely understood. Although several studies have investigated the alterations of brain connectivity as one of the pathophysiological mechanisms of RLS, there are only few reports on functional connectivity changes after RLS treatment. Forty-nine patients with newly diagnosed RLS and 50 healthy controls were prospectively enrolled. The patients underwent resting-state functional magnetic resonance imaging (rs-fMRI) at baseline, and 39 patients underwent follow-up rs-fMRI, 3 months after treatment with pramipexole or pregabalin. Patients were divided into good or poor medication response groups. Functional brain connectivity was analysed using rs-fMRI and graph theoretical analysis. Significant differences in functional connectivity were observed between the RLS patients and healthy controls. The average path length, clustering coefficient, transitivity, and local efficiency were lower (2.02 vs. 2.30, p < 0.001; 0.45 vs. 0.56, p < 0.001; 3.08 vs. 4.21, p < 0.001; and 0.71 vs. 0.76, p < 0.001, respectively) and the global efficiency was higher (0.53 vs. 0.50, p < 0.001) in patients with RLS than in healthy controls. Differences in functional connectivity at the global level were also observed between post- and pre-treatment RLS patients who showed a good medication response. Transitivity in the post-treatment group was higher than that in the pre-treatment group (3.22 vs. 3.04, p = 0.007). Global efficiency was positively correlated with RLS severity (r = 0.377, p = 0.007). This study demonstrates that RLS is associated with distinct alterations in brain connectivity, which can be partially normalised following symptom management. These findings suggest that therapeutic interventions for RLS modulate brain function, emphasising the importance of symptom-focussed treatment in managing RLS.

16.
Aging Male ; 27(1): 2317165, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38389408

RESUMEN

BACKGROUND: Obstructive sleep apnea (OSA) is linked to various health complications, including erectile dysfunction (ED), which is more prevalent in individuals with OSA. This study explored ED in Korean OSA patients and assessed the impact of continuous positive airway pressure (CPAP) therapy on ED. METHODS: A total of 87 male patients with OSA from four different sleep centers underwent physical measurements and completed sleep and mental health (MH) questionnaires, including the Korean version of the International index of erectile function (IIEF), before and three months after initiating CPAP therapy. RESULTS: After three months of CPAP therapy, the patients demonstrated a significant improvement in ED as measured on the IIEF. However, the study found no significant correlation between the duration of CPAP use and the improvement in IIEF score. It did identify the SF36 quality of life assessment as a significant factor influencing ED improvement after CPAP. CONCLUSIONS: ED is a prevalent issue that escalates with age and is associated with OSA. CPAP therapy has shown potential in alleviating ED symptoms, particularly in those with underlying psychological conditions, although further research is required to confirm these findings and understand the underlying mechanisms.


Asunto(s)
Disfunción Eréctil , Apnea Obstructiva del Sueño , Masculino , Humanos , Disfunción Eréctil/etiología , Presión de las Vías Aéreas Positiva Contínua/efectos adversos , Calidad de Vida/psicología , Polisomnografía/efectos adversos , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/terapia , Apnea Obstructiva del Sueño/diagnóstico
17.
BMC Neurol ; 24(1): 89, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448803

RESUMEN

BACKGROUND: Neuropsychiatric symptoms and delusions are highly prevalent among people with dementia. However, multiple roots of neurobiological bases and shared neural basis of delusion and cognitive function remain to be characterized. By utilizing a fine-grained multivariable approach, we investigated distinct neuroanatomical correlates of delusion symptoms across a large population of dementing illnesses. METHODS: In this study, 750 older adults with mild cognitive impairment and Alzheimer's disease completed brain structural imaging and neuropsychological assessment. We utilized principal component analysis followed by varimax rotation to identify the distinct multivariate correlates of cortical thinning patterns. Five of the cognitive domains were assessed whether the general cognitive abilities mediate the association between cortical thickness and delusion. RESULTS: The result showed that distributed thickness patterns of temporal and ventral insular cortex (component 2), inferior and lateral prefrontal cortex (component 1), and somatosensory-visual cortex (component 5) showed negative correlations with delusions. Subsequent mediation analysis showed that component 1 and 2, which comprises inferior frontal, anterior insula, and superior temporal regional thickness accounted for delusion largely through lower cognitive functions. Specifically, executive control function assessed with the Trail Making Test mediated the relationship between two cortical thickness patterns and delusions. DISCUSSION: Our findings suggest that multiple distinct subsets of brain regions underlie the delusions among older adults with cognitive impairment. Moreover, a neural loss may affect the occurrence of delusion in dementia largely due to impaired general cognitive abilities.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico por imagen , Deluciones , Disfunción Cognitiva/diagnóstico por imagen , Cognición , Encéfalo/diagnóstico por imagen
18.
Clin Lab ; 70(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39257113

RESUMEN

BACKGROUND: The goal of this study was to develop and validate a UPLC-MS/MS method for simultaneous mea-surement of 13 AEDs, including carbamazepine, oxcarbazepine, lamotrigine, levetiracetam, topiramate, primidone, zonisamide, gabapentin, lacosamide, perampanel, pregabalin, rufinamide, and vigabatrin, in whole blood samples. METHODS: A UPLC-MS/MS method for simultaneous determination of 13 AEDs in whole blood was developed, and validation was conducted for accuracy, precision, limit of quantification (LOQ), matrix effect, and stability. Our method was compared to two different hospitals using UPLC-MS/MS. RESULTS: All AEDs exhibited linearity across the AMR (analytical measurement range), with R2 values ranging from 0.994 to 1.000. The imprecision and inaccuracy for low and high quality control (QC) levels were within an acceptable range, with the coefficient of variation (CV) < 15%. The LOQ was 0.62 µg/mL for carbamazepine, 1.61 µg/mL for oxcarbazepine, 1.30 µg/mL for lamotrigine, 13.20 µg/mL for levetiracetam, 1.26 µg/mL for topira-mate, 1.01 µg/mL for primidone, 1.59 µg/mL for zonisamide, 1.09 µg/mL for lacosamide, 1.61 µg/mL for gabapentin, 0.50 µg/mL for pregabalin, 0.07 ng/mL for perampanel, 3.00 µg/mL for rufinamide, and 2.06 µg/mL for vigabatrin. All AEDs demonstrated acceptable assay parameters for carryover, stability, and matrix effects. Moreover, the assay showed satisfactory results compared to two different hospitals with a bias of less than 15%. CONCLUSIONS: We successfully developed and validated a fast and robust UPLC-MS/MS method for routine therapeutic drug monitoring of thirteen antiepileptic drugs simultaneously.


Asunto(s)
Anticonvulsivantes , Límite de Detección , Espectrometría de Masas en Tándem , Anticonvulsivantes/sangre , Anticonvulsivantes/análisis , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas en Tándem/normas , Humanos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Líquida de Alta Presión/normas , Reproducibilidad de los Resultados , Monitoreo de Drogas/métodos , Monitoreo de Drogas/normas , Estándares de Referencia , Cromatografía Líquida con Espectrometría de Masas
19.
Clin Lab ; 70(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38469788

RESUMEN

BACKGROUND: There is little data about the performance of multiplex rapid antigen tests (RATs) on the detection of SARS-CoV-2, influenza A (Flu A), and influenza B (Flu B). This study is to evaluate the performance of Panbio COVID-19/Flu A&B rapid panel (Abbott Diagnostics, Korea) and analyze the factors influencing its sensitivity. METHODS: Nasopharyngeal swabs were collected and stored at the Korea University Anam hospital. In total, 400 residual samples from nasopharyngeal swabs were examined. The diagnostic accuracy of RAT was compared to that of RT-qPCR using the Allplex SARS-CoV-2/FluA/FluB/RSV Assay (Seegene, Seoul, South Korea). RESULTS: Panbio COVID-19/Flu A&B rapid panel showed the sensitivities of 88.0%, 92.0%, and 100% for SARS-CoV-2, Flu A, and Flu B, respectively, and specificities of 100% for all. The agreements with previously licensed single-plex RATs were shown to be high. In the analysis of variables affecting sensitivity, inappropriate sampling time after symptom onset (STASO) and high cycle threshold (Ct value) were shown to negatively affect the sensi-tivity. CONCLUSIONS: In conclusion, the multiplex RAT is useful for diagnosing SARS-CoV-2 and Flu A/B, but more clinical studies are needed.


Asunto(s)
COVID-19 , Virus de la Influenza A , Gripe Humana , Humanos , Gripe Humana/diagnóstico , SARS-CoV-2 , Virus de la Influenza B/genética , COVID-19/diagnóstico , Nasofaringe , Sensibilidad y Especificidad
20.
Cryobiology ; 115: 104869, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38412911

RESUMEN

We investigated methods for cryopreserving sperm from the endangered gudgeon, Microphysogobio rapidus, by examining the effects of cryoprotective agent (CPA) concentration, diluent, and dilution ratio on post-thaw sperm quality. The quality of frozen sperm was evaluated in terms of motility and kinematic parameters, viability, DNA damage, and fertilization rate. We evaluated methanol, glycerol, dimethyl sulfoxide (DMSO), and ethylene glycol as CPAs. Sperm motility, velocity, and viability were significantly higher when methanol was used as the CPA (p < 0.05). The diluents tested were Ringer's solution, Kurokura's Extender, Common Carp Sperm Extender (CCSE), and buffered sperm motility-inhibiting saline solution (BSMIS); post-thaw motility was highest when Ringer's solution was used as the diluent. Next, various quantities of methanol were combined with Ringer's solution to identify the optimal dose of methanol. The dilution ratios tested ranged from 1:1 to 1:7. Cryopreserved sperm was thawed at 20 °C for 15 s. The use of 10% methanol with Ringer's solution at a dilution ratio of 1:5 resulted in the highest post-thaw sperm motility, viability, and velocity including VAP, VCL, and VSL. Post-thaw sperm showed significantly greater DNA damage than the control (fresh sperm) (p < 0.05). The fertilization rate was highest with fresh sperm (p < 0.05), followed by sperm frozen with 10% methanol + Ringer's solution. We recommend that the best way to preserve sperm in the studied species is to use a combination of Ringer's solution and 10% methanol at a 1:5 dilution ratio. Our findings will facilitate the artificial fertilization of M. rapidus.


Asunto(s)
Criopreservación , Crioprotectores , Cyprinidae , Dimetilsulfóxido , Metanol , Preservación de Semen , Motilidad Espermática , Espermatozoides , Animales , Masculino , Criopreservación/métodos , Criopreservación/veterinaria , Crioprotectores/farmacología , Preservación de Semen/métodos , Preservación de Semen/veterinaria , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Cyprinidae/fisiología , Metanol/farmacología , Dimetilsulfóxido/farmacología , Glicerol/farmacología , Glicol de Etileno/farmacología , Daño del ADN/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA