Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 141(8): 945-950, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36477272

RESUMEN

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for both malignant and nonmalignant hematologic disorders. However, graft-versus-host disease (GVHD) and malignant relapse limit its therapeutic success. We previously demonstrated that the blockade of interferon-gamma receptor (IFNGR) signaling in donor T cells resulted in a reduction in GVHD while preserving graft-versus-leukemia (GVL) effects. However, the underlying molecular mechanisms remain inconclusive. In this study, we found that S100A9 is a novel GVHD suppressor upregulated when IFNGR is blocked in T cells. Both Ifngr1-/- and S100a9-overexpressing T cells significantly reduced GVHD without compromising GVL, altering donor T-cell trafficking to GVHD target organs in our mouse model of allo-HSCT. In addition, in vivo administration of recombinant murine S100A9 proteins prolongs the overall survival of recipient mice. Furthermore, in vivo administration of anti-human IFNGRα neutralizing antibody (αhGR-Nab) significantly upregulates the expression of S100A9 in human T cells and improved GVHD in our mouse model of xenogeneic human peripheral blood mononuclear cell transplantation. Consistent with S100a9-overexpressing T cells in our allo-HSCT model, αhGR-Nab reduced human T-cell trafficking to the GVHD target organs. Taken together, S100A9, a downstream molecule suppressed by IFNGR signaling, functions as a novel GVHD suppressor without compromising GVL.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Ratones , Humanos , Animales , Trasplante Homólogo , Leucocitos Mononucleares/metabolismo , Trasplante de Células Madre Hematopoyéticas/métodos , Linfocitos T , Proteínas Recombinantes/metabolismo , Efecto Injerto vs Leucemia , Calgranulina B
2.
J Allergy Clin Immunol ; 153(3): 705-717.e11, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38000697

RESUMEN

BACKGROUND: Neutrophil extracellular traps (NETs) are observed in chronic rhinosinusitis (CRS), although their role remains unclear. OBJECTIVES: This study aimed to investigate the influence of NETs on the CRS epithelium. METHODS: Forty-five sinonasal biopsy specimens were immunofluorescence-stained to identify NETs and p63+ basal stem cells. Investigators treated human nasal epithelial cells with NETs and studied them with immunofluorescence staining, Western blotting, and quantitative real-time PCR. NET inhibitors were administered to a murine neutrophilic nasal polyp model. RESULTS: NETs existed in tissues in patients with CRS with nasal polyps, especially in noneosinophilic nasal polyp tissues. p63+ basal cell expression had a positive correlation with the release of NETs. NETs induced the expansion of Ki-67+p63+ cells. We found that ΔNp63, an isoform of p63, was mainly expressed in the nasal epithelium and controlled by NETs. Treatment with deoxyribonuclease (DNase) I or Sivelestat (NET inhibitors) prevented the overexpression of ΔNp63+ epithelial stem cells and reduced polyp formation. CONCLUSIONS: These results reveal that NETs are implicated in CRS pathogenesis via basal cell hyperplasia. This study suggests a novel possibility of treating CRS by targeting NETs.


Asunto(s)
Trampas Extracelulares , Pólipos Nasales , Rinitis , Rinosinusitis , Sinusitis , Humanos , Animales , Ratones , Rinitis/patología , Pólipos Nasales/patología , Hiperplasia/patología , Sinusitis/patología , Mucosa Nasal/patología , Enfermedad Crónica
3.
Molecules ; 29(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675621

RESUMEN

Allogeneic hematopoietic cell transplantation (allo-HCT) is a highly effective, well-established treatment for patients with various hematologic malignancies and non-malignant diseases. The therapeutic benefits of allo-HCT are mediated by alloreactive T cells in donor grafts. However, there is a significant risk of graft-versus-host disease (GvHD), in which the donor T cells recognize recipient cells as foreign and attack healthy organs in addition to malignancies. We previously demonstrated that targeting JAK1/JAK2, mediators of interferon-gamma receptor (IFNGR) and IL-6 receptor signaling, in donor T cells using baricitinib and ruxolitinib results in a significant reduction in GvHD after allo-HCT. Furthermore, we showed that balanced inhibition of JAK1/JAK2 while sparing JAK3 is important for the optimal prevention of GvHD. Thus, we have generated novel JAK1/JAK2 inhibitors, termed WU derivatives, by modifying baricitinib. Our results show that WU derivatives have the potential to mitigate GvHD by upregulating regulatory T cells and immune reconstitution while reducing the frequencies of antigen-presenting cells (APCs) and CD80 expression on these APCs in our preclinical mouse model of allo-HCT. In addition, WU derivatives effectively downregulated CXCR3 and T-bet in primary murine T cells. In summary, we have generated novel JAK inhibitors that could serve as alternatives to baricitinib or ruxolitinib.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Pirazoles , Trasplante Homólogo , Animales , Ratones , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/efectos de los fármacos , Células Presentadoras de Antígenos/metabolismo , Azetidinas/farmacología , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 1/metabolismo , Janus Quinasa 2/metabolismo , Janus Quinasa 2/antagonistas & inhibidores , Inhibidores de las Cinasas Janus/farmacología , Ratones Endogámicos C57BL , Purinas/farmacología , Pirazoles/farmacología , Sulfonamidas/farmacología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos
4.
Small ; 19(39): e2302023, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37246275

RESUMEN

Deoxyribonuclease-I (DNase-I), a representative endonuclease, is an important biomarker for the diagnosis of infectious diseases and cancer progression. However, enzymatic activity decreases rapidly ex vivo, which highlights the need for precise on-site detection of DNase-I. Here, a localized surface plasmon resonance (LSPR) biosensor that enables the simple and rapid detection of DNase-I is reported. Moreover, a novel technique named electrochemical deposition and mild thermal annealing (EDMIT) is applied to overcome signal variations. By taking advantage of the low adhesion of gold clusters on indium tin oxide substrates, both the uniformity and sphericity of gold nanoparticles are increased under mild thermal annealing conditions via coalescence and Ostwald ripening. This ultimately results in an approximately 15-fold decrease in LSPR signal variations. The linear range of the fabricated sensor is 20-1000 ng mL-1 with a limit of detection (LOD) of 127.25 pg mL-1 , as demonstrated by spectral absorbance analyses. The fabricated LSPR sensor stably measured DNase-I concentrations from samples collected from both an inflammatory bowel disease (IBD) mouse model, as well as human patients with severe COVID-19 symptoms. Therefore, the proposed LSPR sensor fabricated via the EDMIT method can be used for early diagnosis of other infectious diseases.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanopartículas del Metal , Animales , Ratones , Humanos , Resonancia por Plasmón de Superficie/métodos , Oro/química , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , Desoxirribonucleasas
5.
Small ; : e2304862, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38050931

RESUMEN

Atopic dermatitis (AD) is a widespread, recurrent, and chronic inflammatory skin condition that imposes a major burden on patients. Conventional treatments, such as corticosteroids, are associated with various side effects, underscoring the need for innovative therapeutic approaches. In this study, the possibility of using indole-3-acetic acid-loaded layered double hydroxides (IAA-LDHs) is evaluated as a novel treatment for AD. IAA is an auxin-class plant hormone with antioxidant and anti-inflammatory effects. Following the synthesis of IAA-LDH nanohybrids, their ability to induce M2-like macrophage polarization in macrophages obtained from mouse bone marrow is assessed. The antioxidant activity of IAA-LDH is quantified by assessing the decrease in intracellular reactive oxygen species levels. The anti-inflammatory and anti-atopic characteristics of IAA-LDH are evaluated in a mouse model of AD by examining the cutaneous tissues, immunological organs, and cells. The findings suggest that IAA-LDH has great therapeutic potential as a candidate for AD treatment based on its in vitro and in vivo modulation of AD immunology, enhancement of macrophage polarization, and antioxidant activity. This inorganic drug delivery technology represents a promising new avenue for the development of safe and effective AD treatments.

6.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37686186

RESUMEN

S100A8 and S100A9 are multifunctional proteins that can initiate various signaling pathways and modulate cell function both inside and outside immune cells, depending on their receptors, mediators, and molecular environment. They have been reported as dysregulated genes and proteins in a wide range of cancers, including hematologic malignancies, from diagnosis to response to therapy. The role of S100A8 and S100A9 in hematologic malignancies is highlighted due to their ability to work together or as antagonists to modify cell phenotype, including viability, differentiation, chemosensitivity, trafficking, and transcription strategies, which can lead to an oncogenic phase or reduced symptoms. In this review article, we discuss the critical roles of S100A8, S100A9, and calprotectin (heterodimer or heterotetramer forms of S100A8 and S100A9) in forming and promoting the malignant bone marrow microenvironment. We also focus on their potential roles as biomarkers and therapeutic targets in various stages of hematologic malignancies from diagnosis to treatment.


Asunto(s)
Calgranulina A , Calgranulina B , Neoplasias Hematológicas , Humanos , Diferenciación Celular , Neoplasias Hematológicas/tratamiento farmacológico , Complejo de Antígeno L1 de Leucocito , Microambiente Tumoral
7.
Proc Natl Acad Sci U S A ; 116(24): 11664-11672, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31123147

RESUMEN

Implantable devices for on-demand and pulsatile drug delivery have attracted considerable attention; however, many devices in clinical use are embedded with the electronic units and battery inside, hence making them large and heavy for implantation. Therefore, we propose an implantable device with multiple drug reservoirs capped with a stimulus-responsive membrane (SRM) for on-demand and pulsatile drug delivery. The SRM is made of thermosensitive POSS(MEO2MA-co-OEGMA) and photothermal nanoparticles of reduced graphene oxide (rGO), and each of the drug reservoirs is filled with the same amount of human growth hormone (hGH). Therefore, with noninvasive near-infrared (NIR) irradiation from the outside skin, the rGO nanoparticles generate heat to rupture the SRM in the implanted device, which can open a single selected drug reservoir to release hGH. Therefore, the device herein is shown to release hGH reproducibly only at the times of NIR irradiation without drug leakage during no irradiation. When implanted in rats with growth hormone deficiency and irradiated with an NIR light from the outside skin, the device exhibits profiles of hGH and IGF1 plasma concentrations, as well as body weight change, similar to those in animals treated with conventional s.c. hGH injections.


Asunto(s)
Hormona de Crecimiento Humana/química , Animales , Sistemas de Liberación de Medicamentos/métodos , Grafito/química , Humanos , Masculino , Nanopartículas/química , Prótesis e Implantes , Ratas
8.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36293494

RESUMEN

Patients with high-risk non-metastatic renal cell carcinoma (RCC) are at risk of metastatic relapse following nephrectomy. Cabozantinib (CZ), a potent multitarget tyrosine kinase inhibitor, interferes with angiogenesis and immunosuppression associated with surgery-induced metastasis. Here, we explored the therapeutic potential of CZ-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (CZ-PLGA-NPs) as an adjuvant strategy for targeting post-nephrectomy metastasis. A clinically relevant subline recapitulating post-nephrectomy lung metastasis of high-risk human RCC, namely Renca-SRLu5-Luc, was established through in vivo serial selection of luciferase-expressing murine RCC Renca-Luc cells. CZ was encapsulated into PLGA-NPs via the conventional single emulsion technique. The multifaceted preclinical antimetastatic efficacy of CZ-PLGA-NPs was assessed in Renca-SRLu5-Luc cells. CZ-PLGA-NPs with a smooth surface displayed desirable physicochemical properties, good CZ encapsulation efficiency, as well as controlled and sustained CZ release. CZ-PLGA-NPs exhibited remarkable dose-dependent toxicity against Renca-SRLu5-Luc cells by inducing G2/M cell cycle arrest and apoptosis. CZ-PLGA-NPs attenuated in vitro colony formation, migration, and invasion by abrogating AKT and ERK1/2 activation. An intravenous injection of CZ-PLGA-NPs markedly reduced lung metastatic burden and prolonged lifespan with favorable safety in the Renca-SRLu5-Luc experimental lung metastasis model. The novel CZ-PLGA-NPs system with multifaceted antimetastatic effects and alleviating off-target toxicity potential is a promising adjunctive agent for patients with surgically resected high-risk RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Neoplasias Pulmonares , Nanopartículas , Humanos , Ratones , Animales , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Láctico/química , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/cirugía , Portadores de Fármacos/química , Emulsiones , Proteínas Proto-Oncogénicas c-akt , Nanopartículas/química , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/cirugía , Inhibidores de Proteínas Quinasas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/cirugía , Tamaño de la Partícula
9.
Bioconjug Chem ; 31(5): 1392-1399, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32208715

RESUMEN

Recently we have reported that the ortho-hydroxy-protected aryl sulfate (OHPAS) system can be exploited as a new self-immolative group (SIG) for phenolic payloads. We extended the system to nonphenolic payloads by simply introducing a para-hydroxy benzyl (PHB) spacer. As an additional variation of the system, we explored a benzylsulfonate version of the OHPAS system and found that it has two distinct breakdown pathways, cyclization and 1,4-elimination, the latter of which implies that para-hydroxy-protected (PHP) benzylsulfonate (BS) can also be used as an alternative SIG. The PHP-BS system was found to be stable chemically and in mouse and human plasma, having payload release rates comparable to those of the original OHPAS conjugates.


Asunto(s)
Portadores de Fármacos/química , Mesilatos/química , Animales , Ciclización , Liberación de Fármacos , Estabilidad de Medicamentos , Humanos , Mesilatos/sangre , Ratones , Prohibitinas
10.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560120

RESUMEN

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the main therapeutic strategy for patients with both malignant and nonmalignant disorders. The therapeutic benefits of allo-HSCT in malignant disorders are primarily derived from the graft-versus-leukemia (GvL) effect, in which T cells in the donor graft recognize and eradicate residual malignant cells. However, the same donor T cells can also recognize normal host tissues as foreign, leading to the development of graft-versus-host disease (GvHD), which is difficult to separate from GvL and is the most frequent and serious complication following allo-HSCT. Inhibition of donor T cell toxicity helps in reducing GvHD but also restricts GvL activity. Therefore, developing a novel therapeutic strategy that selectively suppresses GvHD without affecting GvL is essential. Recent studies have shown that inhibition of histone deacetylases (HDACs) not only inhibits the growth of tumor cells but also regulates the cytotoxic activity of T cells. Here, we compile the known therapeutic potential of HDAC inhibitors in preventing several stages of GvHD pathogenesis. Furthermore, we will also review the current clinical features of HDAC inhibitors in preventing and treating GvHD as well as maintaining GvL.


Asunto(s)
Enfermedad Injerto contra Huésped/tratamiento farmacológico , Efecto Injerto vs Leucemia/efectos de los fármacos , Inhibidores de Histona Desacetilasas/uso terapéutico , Neoplasias/terapia , Ensayos Clínicos como Asunto , Enfermedad Injerto contra Huésped/enzimología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Humanos , Neoplasias/enzimología , Neoplasias/metabolismo , Linfocitos T Citotóxicos/efectos de los fármacos , Trasplante Homólogo
11.
Bioconjug Chem ; 30(7): 1969-1978, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31251559

RESUMEN

The ortho-hydroxy-protected aryl sulfate (OHPAS) linker is composed of a diaryl sulfate backbone equipped with a latent phenol moiety at the ortho position of one of the aryl units. The Ar-OH released when the ortho phenol undergoes intramolecular cyclization and displaces the second aryl unit can be viewed as a payload. We have shown in the preceding paper that the OHPAS linkers are highly stable chemically and in various plasmas, yet release payloads when exposed to suitable triggering conditions. As an extension of the OHPAS system, we employed a para-hydroxy benzyl (PHB) spacer for coupling to nonphenolic payloads; this tactic again provided a highly stable system capable of smooth release of appended payloads. The PHB modification works beautifully for tertiary amine and N-heterocycle payloads.


Asunto(s)
Aminas/química , Compuestos de Bencilo/química , Compuestos Heterocíclicos/química , Fenol/química , Sulfatos/química , Alcoholes/síntesis química , Alcoholes/química , Aminas/síntesis química , Compuestos de Bencilo/síntesis química , Ciclización , ADN/síntesis química , ADN/química , Compuestos Heterocíclicos/síntesis química , Fenol/síntesis química , ARN/síntesis química , ARN/química , Sulfatos/síntesis química
13.
FASEB J ; 32(5): 2630-2643, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29295856

RESUMEN

The prevalence of metabolic diseases, including type 2 diabetes, obesity, and cardiovascular disease, has rapidly increased, yet the molecular mechanisms underlying the metabolic syndrome, a primary risk factor, remain incompletely understood. The small, gaseous molecule carbon monoxide (CO) has well-known anti-inflammatory, antiproliferative, and antiapoptotic effects in a variety of cellular- and tissue-injury models, whereas its potential effects on the complex pathways of metabolic disease remain unknown. We demonstrate here that CO can alleviate metabolic dysfunction in vivo and in vitro. We show that CO increased the expression and section of the fibroblast growth factor 21 (FGF21) in hepatocytes and liver. CO-stimulated PERK activation and enhanced the levels of FGF21 via the eIF2α-ATF4 signaling pathway. The induction of FGF21 by CO attenuated endoreticulum stress- or diet-induced, obesity-dependent hepatic steatosis. Moreover, CO inhalation lowered blood glucose levels, enhanced insulin sensitivity, and promoted energy expenditure by stimulating the emergence of beige adipose cells from white adipose cells. In conclusion, we suggest that CO acts as a potent inducer of FGF21 expression and that CO critically depends on FGF21 to regulate metabolic homeostasis.-Joe, Y., Kim, S., Kim, H. J., Park, J., Chen, Y., Park, H.-J., Jekal, S.-J., Ryter, S. W., Kim, U. H., Chung, H. T. FGF21 induced by carbon monoxide mediates metabolic homeostasis via the PERK/ATF4 pathway.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Monóxido de Carbono/sangre , Factores de Crecimiento de Fibroblastos/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Transducción de Señal , eIF-2 Quinasa/metabolismo , Factor de Transcripción Activador 4/genética , Animales , Glucemia/genética , Glucemia/metabolismo , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/genética , Metabolismo Energético/genética , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Factores de Crecimiento de Fibroblastos/genética , Hepatocitos/patología , Hígado/patología , Ratones , Ratones Noqueados , eIF-2 Quinasa/genética
14.
Mol Pharm ; 15(8): 3143-3152, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30020792

RESUMEN

To treat glaucoma, conventional eye drops are often prescribed. However, the eye drops have limited effectiveness as a result of low drug bioavailability due to their rapid clearance from the preocular space. To resolve this, we proposed amino-functionalized mesoporous silica (AMS) particles as delivery carriers of the glaucoma drug, brimonidine. Because of the presence of mesopores, brimonidine (BMD) could be encapsulated in the AMS with a loading amount of 41.73 µg/mg (i.e., drug loading capacity of about 4.17%) to give the BMD-AMS, which could release the drug in a sustained manner over 8 h. BMD-AMS was also shown to be mucoadhesive due to the presence of both hydroxyl and amino groups in the surface, allowing for formation of hydrogen bonds and an ionic complex with the mucin, respectively. Therefore, when topically administered to rabbit eyes in vivo, BMD-AMS could reside in the preocular space for up to 12 h because of its adherence to the mucous layer. To assess in vivo efficacy, we examined the variance in intraocular pressure (IOP) and brimonidine concentration in the aqueous humor (AH) after applying BMD-AMS to the eye, which was compared with that induced by Alphagan P, the marketed brimonidine eye drops. For BMD-AMS, the duration in the decrease in IOP and the area under the drug concentration in the AH-time curve (AUC) were 12 h and 2.68 µg·h/mL, respectively, which were about twice as large as those obtained with Alphagan P; this finding indicated enhanced ocular bioavailability of brimonidine with BMD-AMS.


Asunto(s)
Antihipertensivos/administración & dosificación , Tartrato de Brimonidina/administración & dosificación , Portadores de Fármacos/química , Glaucoma/tratamiento farmacológico , Dióxido de Silicio/química , Administración Oftálmica , Animales , Antihipertensivos/farmacocinética , Antihipertensivos/toxicidad , Humor Acuoso/efectos de los fármacos , Humor Acuoso/metabolismo , Disponibilidad Biológica , Tartrato de Brimonidina/farmacocinética , Tartrato de Brimonidina/toxicidad , Portadores de Fármacos/toxicidad , Composición de Medicamentos/métodos , Liberación de Fármacos , Presión Intraocular/efectos de los fármacos , Masculino , Modelos Animales , Soluciones Oftálmicas/administración & dosificación , Porosidad , Conejos , Dióxido de Silicio/toxicidad
15.
J Neuroinflammation ; 14(1): 189, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28927423

RESUMEN

BACKGROUND: The primary cilium is an organelle that can act as a master regulator of cellular signaling. Despite the presence of primary cilia in hippocampal neurons, their function is not fully understood. Recent studies have demonstrated that the primary cilium influences interleukin (IL)-1ß-induced NF-κB signaling, ultimately mediating the inflammatory response. We, therefore, investigated ciliary function and NF-κB signaling in lipopolysaccharide (LPS)-induced neuroinflammation in conjunction with ciliary length analysis. METHODS: Since TLR4/NF-κB signaling is a well-known inflammatory pathway, we measured ciliary length and inflammatory mediators in wild type (WT) and TLR4-/- mice injected with LPS. Next, to exclude the effects of microglial TLR4, we examined the ciliary length, ciliary components, inflammatory cytokine, and mediators in HT22 hippocampal neuronal cells. RESULTS: Primary ciliary length decreased in hippocampal pyramidal neurons after intracerebroventricular injection of LPS in WT mice, whereas it increased in TLR4-/- mice. LPS treatment decreased primary ciliary length, activated NF-κB signaling, and increased Cox2 and iNOS levels in HT22 hippocampal neurons. In contrast, silencing Kif3a, a key protein component of cilia, increased ARL13B ciliary protein levels and suppressed NF-κB signaling and expression of inflammatory mediators. CONCLUSIONS: These data suggest that LPS-induced NF-κB signaling and inflammatory mediator expression are modulated by cilia and that the blockade of primary cilium formation by Kif3a siRNA regulates TLR4-induced NF-κB signaling. We propose that primary cilia are critical for regulating NF-κB signaling events in neuroinflammation and in the innate immune response.


Asunto(s)
Cilios/inmunología , Hipocampo/inmunología , Inflamación/inmunología , Neuronas/inmunología , Receptor Toll-Like 4/inmunología , Animales , Cilios/metabolismo , Cilios/ultraestructura , Hipocampo/metabolismo , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Neuronas/metabolismo , Transducción de Señal/inmunología , Receptor Toll-Like 4/metabolismo
16.
J Immunol ; 194(9): 4498-506, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25821218

RESUMEN

IL-1ß and TNF-α are important proinflammatory cytokines that respond to mutated self-antigens of tissue damage and exogenous pathogens. The endoplasmic reticulum (ER) stress and unfolded protein responses are related to the induction of proinflammatory cytokines. However, the detailed molecular pathways by which ER stress mediates cytokine gene expression have not been investigated. In this study, we found that ER stress-induced inositol-requiring enzyme (IRE)1α activation differentially regulates proinflammatory cytokine gene expression via activation of glycogen synthase kinase (GSK)-3ß and X-box binding protein (XBP)-1. Surprisingly, IL-1ß gene expression was modulated by IRE1α-mediated GSK-3ß activation, but not by XBP-1. However, IRE1α-mediated XBP-1 splicing regulated TNF-α gene expression. SB216763, a GSK-3 inhibitor, selectively inhibited IL-1ß gene expression, whereas the IRE1α RNase inhibitor STF083010 suppressed only TNF-α production. Additionally, inhibition of GSK-3ß greatly increased IRE1α-dependent XBP-1 splicing. Our results identify an unsuspected differential role of downstream mediators GSK-3ß and XBP-1 in ER stress-induced IRE1α activation that regulates cytokine production through signaling cross-talk. These results have important implications in the regulation of inflammatory pathways during ER stress, and they suggest novel therapeutic targets for diseases in which meta-inflammation plays a key role.


Asunto(s)
Citocinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Mediadores de Inflamación/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Activación Enzimática , Regulación de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Modelos Biológicos , Empalme del ARN , Factores de Transcripción del Factor Regulador X , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Activación Transcripcional , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína 1 de Unión a la X-Box
17.
Biomed Eng Lett ; 14(3): 439-450, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38645594

RESUMEN

Purpose: Transscleral ocular iontophoresis has been proposed to deliver charged particulate drugs to ocular tissues effectively by transmitting a weak electrical current through the sclera. The electric fields formed are influenced by the electrode conditions, thus affecting the amount of particulate drugs delivered to the ocular tissues via iontophoresis. Computational simulation is widely used to simulate drug concentrations in the eye; therefore, reflecting the characteristics of the drugs in living tissues to the simulations is important for a more precise estimation of drug concentration. In this study, we investigated the effect of electrode conditions (location and size) on the efficacy of transscleral iontophoresis. Methods: We first determined the simulation parameters based on the comparison of the amount of drug in the sclera in the simulation and in vivo experimental results. The injection of the negatively charged nanoparticles into the cul-de-sac of the lower eyelid was simulated. The active electrode (cathode) was attached to the skin immediately above the injection site, while the return electrode (anode) was placed over the eyebrow. The drug concentration distribution in the eye, based on either the location or size of each electrode, was evaluated using the finite element method with the estimated simulation parameters. Results: Our results indicate that drug permeability varies depending on the location and the size of the electrodes. Conclusion: Our findings demonstrate that the determination of optimal electrode conditions is necessary to enhance the effectiveness of transscleral iontophoresis. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-024-00359-2.

18.
Nano Converg ; 11(1): 6, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332364

RESUMEN

Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a family of chronic disorders along the gastrointestinal tract. Because of its idiopathic nature, IBD does not have a fundamental cure; current available therapies for IBD are limited to prolonged doses of immunomodulatory agents. While these treatments may reduce inflammation, limited therapeutic efficacy, inconsistency across patients, and adverse side effects from aggressive medications remain as major drawbacks. Recently, excessive production and accumulation of neutrophil extracellular traps (NETs) also known as NETosis have been identified to exacerbate inflammatory responses and induce further tissue damage in IBD. Such discovery invited many researchers to investigate NETs as a potential therapeutic target. DNase-I is a natural agent that can effectively destroy NETs and, therefore, potentially reduce NETs-induced inflammations even without the use of aggressive drugs. However, low stability and rapid clearance of DNase-I remain as major limitations for further therapeutic applications. In this research, polymeric nanozymes were fabricated to increase the delivery and therapeutic efficacy of DNase-I. DNase-I was immobilized on the surface of polymeric nanoparticles to maintain its enzymatic properties while extending its activity in the colon. Delivery of DNase-I using this platform allowed enhanced stability and prolonged activity of DNase-I with minimal toxicity. When administered to animal models of IBD, DNase-I nanozymes successfully alleviated various pathophysiological symptoms of IBD. More importantly, DNase-I nanozyme administration successfully attenuated neutrophil infiltration and NETosis in the colon compared to free DNase-I or mesalamine.

19.
ACS Appl Mater Interfaces ; 16(12): 14583-14594, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38478505

RESUMEN

Healing chronic diabetic wounds is challenging because of excessive reactive oxygen species (ROS) and hypoxia in the wound microenvironment. To address this issue, we propose a hydrogel wound dressing composed of polyethylene glycol (PEG) cross-linked with a biomimetic catalase, Fe-containing porphyrin (FeP) (i.e., FeP hydrogel). The immobilized FeP can serve as a catalyst for both ROS scavenging and O2 generation. The properties of the hydrogels were optimized by varying the composition ratios of the two constituent materials based on their mechanical properties and catalytic activity. Our in vitro cell experiments revealed that the FeP-80 hydrogel enhanced the proliferation and migration of keratinocytes and dermal fibroblasts and promoted the expression of angiogenic growth factors in keratinocytes. When tested with an in vivo diabetic chronic wound model, the FeP-80 hydrogel promoted wound healing by facilitating re-epithelialization, promoting angiogenesis, and suppressing inflammation, compared with other control groups.


Asunto(s)
Diabetes Mellitus , Hidrogeles , Humanos , Hidrogeles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Oxígeno , Cicatrización de Heridas , Antibacterianos
20.
Biomater Res ; 28: 0008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532906

RESUMEN

Background: Cancer recurrence and metastasis are major contributors to treatment failure following tumor resection surgery. We developed a novel implantable drug delivery system utilizing glycol chitosan to address these issues. Glycol chitosan is a natural adjuvant, inducing dendritic cell activation to promote T helper 1 cell immune responses, macrophage activation, and cytokine production. Effective antigen production by dendritic cells initiates T-cell-mediated immune responses, aiding tumor growth control. Methods: In this study, we fabricated multifunctional methacrylated glycol chitosan (MGC) hydrogels with extended release of DNA/doxorubicin (DOX) complex for cancer immunotherapy. We constructed the resection model of breast cancer to verify the anticancer effects of MGC hydrogel with DNA/DOX complex. Results: This study demonstrated the potential of MGC hydrogel with extended release of DNA/DOX complex for local and efficient cancer therapy. The MGC hydrogel was implanted directly into the surgical site after tumor resection, activating tumor-related immune cells both locally and over a prolonged period of time through immune-reactive molecules. Conclusions: The MGC hydrogel effectively suppressed tumor recurrence and metastasis while enhancing immunotherapeutic efficacy and minimizing side effects. This biomaterial-based drug delivery system, combined with cancer immunotherapy, can substantial improve treatment outcomes and patient prognosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA