Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Virol ; 169(1): 4, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079005

RESUMEN

Mammaliicoccus sciuri is an opportunistic zoonotic pathogen in humans and animals. We isolated the Mammaliicoccus phage vB_MscM-PMS3, which was also able to infect and lyse M. sciuri and M. lentus. The phage genome is a linear dsDNA that is 147,811 bp in length and contains 206 ORFs and three tRNA genes. It showed low genome coverage (< 17%) and sequence identity (< 91.3%) to other phage genomes. Phylogenetic analysis based on the whole genome and major capsid protein revealed that this phage clustered with members of the subfamily Twortvirinae of the family Herelleviridae, but it was distinctly separated from the other members, indicating its uniqueness.


Asunto(s)
Bacteriófagos , Animales , Humanos , Bacteriófagos/genética , Filogenia , Genoma Viral , Genómica , Secuenciación Completa del Genoma
2.
J Microbiol ; 61(7): 693-702, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37646922

RESUMEN

Fibroblast growth factor 11 (FGF11) is a member of the intracellular FGF family, which shows different signal transmission compared with other FGF superfamily members. The molecular function of FGF11 is not clearly understood. In this study, we identified the inhibitory effect of FGF11 on hepatitis B virus (HBV) gene expression through transcriptional suppression. FGF11 decreased the mRNA and protein expression of HBV genes in liver cells. While the nuclear receptor FXRα1 increased HBV promoter transactivation, FGF11 decreased the FXRα-mediated gene induction of the HBV promoter by the FXRα agonist. Reduced endogenous levels of FXRα by siRNA and the dominant negative mutant protein (aa 1-187 without ligand binding domain) of FXRα expression indicated that HBV gene suppression by FGF11 is dependent on FXRα inhibition. In addition, FGF11 interacts with FXRα protein and reduces FXRα protein stability. These results indicate that FGF11 inhibits HBV replicative expression through the liver cell-specific transcription factor, FXRα, and suppresses HBV promoter activity. Our findings may contribute to the establishment of better regimens for the treatment of chronic HBV infections by including FGF11 to alter the bile acid mediated FXR pathway.


Asunto(s)
Ácidos y Sales Biliares , Virus de la Hepatitis B , Virus de la Hepatitis B/genética , Factores de Crecimiento de Fibroblastos/genética , Expresión Génica , Hepatocitos
3.
J Hazard Mater ; 416: 126239, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492990

RESUMEN

Polystyrene (PS), a major plastic waste, is difficult to biodegrade due to its unique chemical structure that comprises phenyl moieties attached to long linear alkanes. In this study, we investigated the biodegradation of PS by mesophilic bacterial cultures obtained from various soils in common environments. Two new strains, Pseudomonas lini JNU01 and Acinetobacter johnsonii JNU01, were specifically enriched in non-carbonaceous nutrient medium, with PS as the only source of carbon. Their growth after culturing in basal media increased more than 3-fold in the presence of PS. Fourier transform infrared spectroscopy analysis, used to confirm the formation of hydroxyl groups and potentially additional chemical bond groups, showed an increase in the amount of oxidized PS samples. Moreover, field emission scanning electron microcopy analysis confirmed PS biodegradation by biofilms of the screened microbes. Water contact angle measurement additionally offered insights into the increased hydrophilic characteristics of PS films. Bioinformatics and transcriptional analysis of A. johnsonii JNU01 revealed alkane-1-monooxygenase (AlkB) to be involved in PS biodegradation, which was confirmed by the hydroxylation of PS using recombinant AlkB. These results provide significant insights into the discovery of novel functions of Pseudomonas sp. and Acinetobacter sp., as well as their potential as PS decomposers.


Asunto(s)
Poliestirenos , Suelo , Acinetobacter , Bacterias , Biodegradación Ambiental , Pseudomonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA