Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1031: 55-94, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29214566

RESUMEN

Public health relies on technologies to produce and analyse data, as well as effectively develop and implement policies and practices. An example is the public health practice of epidemiology, which relies on computational technology to monitor the health status of populations, identify disadvantaged or at risk population groups and thereby inform health policy and priority setting. Critical to achieving health improvements for the underserved population of people living with rare diseases is early diagnosis and best care. In the rare diseases field, the vast majority of diseases are caused by destructive but previously difficult to identify protein-coding gene mutations. The reduction in cost of genetic testing and advances in the clinical use of genome sequencing, data science and imaging are converging to provide more precise understandings of the 'person-time-place' triad. That is: who is affected (people); when the disease is occurring (time); and where the disease is occurring (place). Consequently we are witnessing a paradigm shift in public health policy and practice towards 'precision public health'.Patient and stakeholder engagement has informed the need for a national public health policy framework for rare diseases. The engagement approach in different countries has produced highly comparable outcomes and objectives. Knowledge and experience sharing across the international rare diseases networks and partnerships has informed the development of the Western Australian Rare Diseases Strategic Framework 2015-2018 (RD Framework) and Australian government health briefings on the need for a National plan.The RD Framework is guiding the translation of genomic and other technologies into the Western Australian health system, leading to greater precision in diagnostic pathways and care, and is an example of how a precision public health framework can improve health outcomes for the rare diseases population.Five vignettes are used to illustrate how policy decisions provide the scaffolding for translation of new genomics knowledge, and catalyze transformative change in delivery of clinical services. The vignettes presented here are from an Australian perspective and are not intended to be comprehensive, but rather to provide insights into how a new and emerging 'precision public health' paradigm can improve the experiences of patients living with rare diseases, their caregivers and families.The conclusion is that genomic public health is informed by the individual and family needs, and the population health imperatives of an early and accurate diagnosis; which is the portal to best practice care. Knowledge sharing is critical for public health policy development and improving the lives of people living with rare diseases.


Asunto(s)
Genómica/métodos , Política de Salud , Medicina de Precisión , Salud Pública , Enfermedades Raras/terapia , Predisposición Genética a la Enfermedad , Genómica/organización & administración , Política de Salud/legislación & jurisprudencia , Humanos , Fenotipo , Formulación de Políticas , Valor Predictivo de las Pruebas , Pronóstico , Desarrollo de Programa , Evaluación de Programas y Proyectos de Salud , Salud Pública/legislación & jurisprudencia , Enfermedades Raras/diagnóstico , Enfermedades Raras/epidemiología , Enfermedades Raras/genética
2.
Am J Hum Genet ; 93(1): 6-18, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23746549

RESUMEN

Nemaline myopathy (NEM) is a common congenital myopathy. At the very severe end of the NEM clinical spectrum are genetically unresolved cases of autosomal-recessive fetal akinesia sequence. We studied a multinational cohort of 143 severe-NEM-affected families lacking genetic diagnosis. We performed whole-exome sequencing of six families and targeted gene sequencing of additional families. We identified 19 mutations in KLHL40 (kelch-like family member 40) in 28 apparently unrelated NEM kindreds of various ethnicities. Accounting for up to 28% of the tested individuals in the Japanese cohort, KLHL40 mutations were found to be the most common cause of this severe form of NEM. Clinical features of affected individuals were severe and distinctive and included fetal akinesia or hypokinesia and contractures, fractures, respiratory failure, and swallowing difficulties at birth. Molecular modeling suggested that the missense substitutions would destabilize the protein. Protein studies showed that KLHL40 is a striated-muscle-specific protein that is absent in KLHL40-associated NEM skeletal muscle. In zebrafish, klhl40a and klhl40b expression is largely confined to the myotome and skeletal muscle, and knockdown of these isoforms results in disruption of muscle structure and loss of movement. We identified KLHL40 mutations as a frequent cause of severe autosomal-recessive NEM and showed that it plays a key role in muscle development and function. Screening of KLHL40 should be a priority in individuals who are affected by autosomal-recessive NEM and who present with prenatal symptoms and/or contractures and in all Japanese individuals with severe NEM.


Asunto(s)
Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Mutación Missense , Miopatías Nemalínicas/genética , Sustitución de Aminoácidos , Animales , Pueblo Asiatico/genética , Estudios de Cohortes , Mutación del Sistema de Lectura , Genes Recesivos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Proteínas Musculares/genética , Miopatías Nemalínicas/etnología , Miopatías Nemalínicas/patología , Linaje , Polimorfismo de Nucleótido Simple , Índice de Severidad de la Enfermedad , Pez Cebra/genética
3.
Am J Med Genet A ; 152A(4): 966-9, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20358610

RESUMEN

We report on a recurrence of a lethal skeletal dysplasia with features similar to Desbuquois dysplasia (DD) to expand the phenotypic spectrum of DD-like conditions, to increase awareness of DD-like phenotypes in the differential diagnosis of prenatal onset skeletal dysplasias, and to suggest a new sign, the Upsilon sign, to aid in the differential diagnosis of skeletal dysplasias with an extra ossification centre distal to second metacarpal.


Asunto(s)
Enfermedades del Desarrollo Óseo/complicaciones , Enfermedades del Desarrollo Óseo/diagnóstico por imagen , Edema/complicaciones , Edema/diagnóstico por imagen , Adulto , Epífisis/patología , Femenino , Feto/anomalías , Feto/patología , Humanos , Masculino , Cambios Post Mortem , Embarazo , Recurrencia , Ultrasonografía Prenatal
4.
NPJ Genom Med ; 5(1): 54, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303739

RESUMEN

Exome sequencing has enabled molecular diagnoses for rare disease patients but often with initial diagnostic rates of ~25-30%. Here we develop a robust computational pipeline to rank variants for reassessment of unsolved rare disease patients. A comprehensive web-based patient report is generated in which all deleterious variants can be filtered by gene, variant characteristics, OMIM disease and Phenolyzer scores, and all are annotated with an ACMG classification and links to ClinVar. The pipeline ranked 21/34 previously diagnosed variants as top, with 26 in total ranked ≤7th, 3 ranked ≥13th; 5 failed the pipeline filters. Pathogenic/likely pathogenic variants by ACMG criteria were identified for 22/145 unsolved cases, and a previously undefined candidate disease variant for 27/145. This open access pipeline supports the partnership between clinical and research laboratories to improve the diagnosis of unsolved exomes. It provides a flexible framework for iterative developments to further improve diagnosis.

5.
Mol Genet Genomic Med ; 7(2): e00507, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30614210

RESUMEN

BACKGROUND: Chromosome 22q11.2 is susceptible to genomic rearrangements and the most frequently reported involve deletions and duplications between low copy repeats LCR22A to LCR22D. Atypical nested deletions and duplications are rarer and can provide a valuable opportunity to investigate the dosage effects of a smaller subset of genes within the 22q11.2 genomic disorder region. METHODS: We describe thirteen individuals from six families, each with atypical nested duplications within the central 22q11.2 region between LCR22B and LCR22D. We then compared the molecular and clinical data for patients from this study and the few reported atypical duplication cases, to the cases with larger typical duplications between LCR22A and LCR22D. Further, we analyzed genes with the nested region to identify candidates highly enriched in human brain tissues. RESULTS: We observed that atypical nested duplications are heterogeneous in size, often familial, and associated with incomplete penetrance and highly variable clinical expressivity. We found that the nested atypical duplications are a possible risk factor for neurodevelopmental phenotypes, particularly for autism spectrum disorder (ASD), speech and language delay, and behavioral abnormalities. In addition, we analyzed genes within the nested region between LCR22B and LCR22D to identify nine genes (ZNF74, KLHL22, MED15, PI4KA, SERPIND1, CRKL, AIFM3, SLC7A4, and BCRP2) with enriched expression in the nervous system, each with unique spatiotemporal patterns in fetal and adult brain tissues. Interestingly, PI4KA is prominently expressed in the brain, and this gene is included either partially or completely in all of our subjects. CONCLUSION: Our findings confirm variable expressivity and incomplete penetrance for atypical nested 22q11.2 duplications and identify genes such as PI4KA to be directly relevant to brain development and disorder. We conclude that further work is needed to elucidate the basis of variable neurodevelopmental phenotypes and to exclude the presence of a second disorder. Our findings contribute to the genotype-phenotype data for atypical nested 22q11.2 duplications, with implications for genetic counseling.


Asunto(s)
Anomalías Múltiples/genética , Trastorno del Espectro Autista/genética , Duplicación Cromosómica/genética , Discapacidades del Desarrollo/genética , Síndrome de DiGeorge/genética , Penetrancia , Anomalías Múltiples/patología , Adolescente , Adulto , Trastorno del Espectro Autista/patología , Niño , Preescolar , Cromosomas Humanos Par 22/genética , Discapacidades del Desarrollo/patología , Síndrome de DiGeorge/patología , Femenino , Humanos , Masculino , Linaje , Fenotipo , Duplicaciones Segmentarias en el Genoma , Síndrome
6.
Clin Epigenetics ; 10(1): 114, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30165906

RESUMEN

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder with a population frequency of approximately 1 in 10,000. The most common epigenetic defect in BWS is a loss of methylation (LOM) at the 11p15.5 imprinting centre, KCNQ1OT1 TSS-DMR, and affects 50% of cases. We hypothesised that genetic factors linked to folate metabolism may play a role in BWS predisposition via effects on methylation maintenance at KCNQ1OT1 TSS-DMR. RESULTS: Single nucleotide variants (SNVs) in the folate pathway affecting methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR), 5-methyltetrahydrofolate-homocysteine S-methyltransferase (MTR), cystathionine beta-synthase (CBS) and methionine adenosyltransferase (MAT1A) were examined in 55 BWS patients with KCNQ1OT1 TSS-DMR LOM and in 100 unaffected cases. MTHFR rs1801133: C>T was more prevalent in BWS with KCNQ1OT1 TSS-DMR LOM (p < 0.017); however, the relationship was not significant when the Bonferroni correction for multiple testing was applied (significance, p = 0.0036). None of the remaining 13 SNVs were significantly different in the two populations tested. The DNMT1 locus was screened in 53 BWS cases, and three rare missense variants were identified in each of three patients: rs138841970: C>T, rs150331990: A>G and rs757460628: G>A encoding NP_001124295 p.Arg136Cys, p.His1118Arg and p.Arg1223His, respectively. These variants have population frequencies of less than 1 in 1000 and were absent from 100 control cases. Functional characterization using a hemimethylated DNA trapping assay revealed a reduced methyltransferase activity relative to wild-type DNMT1 for each variant ranging from 40 to 70% reduction in activity. CONCLUSIONS: This study is the first to examine folate pathway genetics in BWS and to identify rare DNMT1 missense variants in affected individuals. Our data suggests that reduced DNMT1 activity could affect maintenance of methylation at KCNQ1OT1 TSS-DMR in some cases of BWS, possibly via a maternal effect in the early embryo. Larger cohort studies are warranted to further interrogate the relationship between impaired MTHFR enzymatic activity attributable to MTHFR rs1801133: C>T, dietary folate intake and BWS.


Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilación de ADN , Ácido Fólico/metabolismo , Mutación Missense , Síndrome de Beckwith-Wiedemann/metabolismo , Femenino , Impresión Genómica , Células HeLa , Humanos , Masculino , Redes y Vías Metabólicas , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Polimorfismo de Nucleótido Simple , Canales de Potasio con Entrada de Voltaje/genética
7.
Orphanet J Rare Dis ; 12(1): 83, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28468665

RESUMEN

BACKGROUND: New approaches are required to address the needs of complex undiagnosed diseases patients. These approaches include clinical genomic diagnostic pipelines, utilizing intra- and multi-disciplinary platforms, as well as specialty-specific genomic clinics. Both are advancing diagnostic rates. However, complementary cross-disciplinary approaches are also critical to address those patients with multisystem disorders who traverse the bounds of multiple specialties and remain undiagnosed despite existing intra-specialty and genomic-focused approaches. The diagnostic possibilities of undiagnosed diseases include genetic and non-genetic conditions. The focus on genetic diseases addresses some of these disorders, however a cross-disciplinary approach is needed that also simultaneously addresses other disorder types. Herein, we describe the initiation and summary outcomes of a public health system approach for complex undiagnosed patients - the Undiagnosed Diseases Program-Western Australia (UDP-WA). RESULTS: Briefly the UDP-WA is: i) one of a complementary suite of approaches that is being delivered within health service, and with community engagement, to address the needs of those with severe undiagnosed diseases; ii) delivered within a public health system to support equitable access to health care, including for those from remote and regional areas; iii) providing diagnoses and improved patient care; iv) delivering a platform for in-service and real time genomic and phenomic education for clinicians that traverses a diverse range of specialties; v) retaining and recapturing clinical expertise; vi) supporting the education of junior and more senior medical staff; vii) designed to integrate with clinical translational research; and viii) is supporting greater connectedness for patients, families and medical staff. CONCLUSION: The UDP-WA has been initiated in the public health system to complement existing clinical genomic approaches; it has been targeted to those with a specific diagnostic need, and initiated by redirecting existing clinical and financial resources. The UDP-WA supports the provision of equitable and sustainable diagnostics and simultaneously supports capacity building in clinical care and translational research, for those with undiagnosed, typically rare, conditions.


Asunto(s)
Planificación en Salud/organización & administración , Salud Pública/métodos , Genómica , Humanos , Proteómica , Australia Occidental
8.
Orphanet J Rare Dis ; 11(1): 77, 2016 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-27287197

RESUMEN

BACKGROUND: The Rare and Undiagnosed Diseases Diagnostic Service (RUDDS) refers to a genomic diagnostic platform operating within the Western Australian Government clinical services delivered through Genetic Services of Western Australia (GSWA). GSWA has provided a state-wide service for clinical genetic care for 28 years and it serves a population of 2.5 million people across a geographical area of 2.5milion Km(2). Within this context, GSWA has established a clinically integrated genomic diagnostic platform in partnership with other public health system managers and service providers, including but not limited to the Office of Population Health Genomics, Diagnostic Genomics (PathWest Laboratories) and with executive level support from the Department of Health. Herein we describe report presents the components of this service that are most relevant to the heterogeneity of paediatric clinical genetic care. RESULTS: Briefly the platform : i) offers multiple options including non-genetic testing; monogenic and genomic (targeted in silico filtered and whole exome) analysis; and matchmaking; ii) is delivered in a patient-centric manner that is resonant with the patient journey, it has multiple points for entry, exit and re-entry to allow people access to information they can use, when they want to receive it; iii) is synchronous with precision phenotyping methods; iv) captures new knowledge, including multiple expert review; v) is integrated with current translational genomic research activities and best practice; and vi) is designed for flexibility for interactive generation of, and integration with, clinical research for diagnostics, community engagement, policy and models of care. CONCLUSION: The RUDDS has been established as part of routine clinical genetic services and is thus sustainable, equitably managed and seeks to translate new knowledge into efficient diagnostics and improved health for the whole community.


Asunto(s)
Servicios de Diagnóstico , Enfermedades Raras/diagnóstico , Australia , Atención a la Salud/estadística & datos numéricos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
9.
Orphanet J Rare Dis ; 10: 148, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26578207

RESUMEN

BACKGROUND: Fetal akinesia/hypokinesia, arthrogryposis and severe congenital myopathies are heterogeneous conditions usually presenting before or at birth. Although numerous causative genes have been identified for each of these disease groups, in many cases a specific genetic diagnosis remains elusive. Due to the emergence of next generation sequencing, virtually the entire coding region of an individual's DNA can now be analysed through "whole" exome sequencing, enabling almost all known and novel disease genes to be investigated for disorders such as these. METHODS: Genomic DNA samples from 45 patients with fetal akinesia/hypokinesia, arthrogryposis or severe congenital myopathies from 38 unrelated families were subjected to next generation sequencing. Clinical features and diagnoses for each patient were supplied by referring clinicians. Genomic DNA was used for either whole exome sequencing or a custom-designed neuromuscular sub-exomic supercapture array containing 277 genes responsible for various neuromuscular diseases. Candidate disease-causing variants were investigated and confirmed using Sanger sequencing. Some of the cases within this cohort study have been published previously as separate studies. RESULTS: A conclusive genetic diagnosis was achieved for 18 of the 38 families. Within this cohort, mutations were found in eight previously known neuromuscular disease genes (CHRND, CHNRG, ECEL1, GBE1, MTM1, MYH3, NEB and RYR1) and four novel neuromuscular disease genes were identified and have been published as separate reports (GPR126, KLHL40, KLHL41 and SPEG). In addition, novel mutations were identified in CHRND, KLHL40, NEB and RYR1. Autosomal dominant, autosomal recessive, X-linked, and de novo modes of inheritance were observed. CONCLUSIONS: By using next generation sequencing on a cohort of 38 unrelated families with fetal akinesia/hypokinesia, arthrogryposis, or severe congenital myopathy we therefore obtained a genetic diagnosis for 47% of families. This study highlights the power and capacity of next generation sequencing (i) to determine the aetiology of genetically heterogeneous neuromuscular diseases, (ii) to identify novel disease genes in small pedigrees or isolated cases and (iii) to refine the interplay between genetic diagnosis and clinical evaluation and management.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Enfermedades Neuromusculares/diagnóstico , Enfermedades Neuromusculares/genética , Diagnóstico Prenatal/métodos , Secuencia de Aminoácidos , Niño , Preescolar , Estudios de Cohortes , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/tendencias , Humanos , Lactante , Recién Nacido , Masculino , Datos de Secuencia Molecular , Linaje , Diagnóstico Prenatal/tendencias
10.
J Pediatr Endocrinol Metab ; 27(3-4): 373-8, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24129101

RESUMEN

Brain-lung-thyroid syndrome (BLTS) characterized by congenital hypothyroidism, respiratory distress syndrome, and benign hereditary chorea is caused by thyroid transcription factor 1 (NKX2-1/TTF1) mutations. We report the clinical and molecular characteristics of four cases presenting with primary hypothyroidism, respiratory distress, and neurological disorder. Two of the four patients presenting with the triad of BLTS had NKX2-1 mutations, and one of these NKX2-1 [c.890_896del (p.Ala327Glyfs*52)] is a novel variant. The third patient without any identified NKX2-1 mutations was a carrier of mitochondrial mutation; this raises the possibility of mitochondrial mutations contributing to thyroid dysgenesis. Although rare, the triad of congenital hypothyroidism, neurological, and respiratory signs is highly suggestive of NKX2-1 anomalies. Screening for NKX2-1 mutations in patients with thyroid, lung, and neurological abnormalities will enable a unifying diagnosis and genetic counseling for the affected families. In addition, identification of an NKX2-1 defect would be helpful in allaying the concerns about inadequate thyroxine supplementation as the cause of neurological defects observed in some children with congenital hypothyroidism.


Asunto(s)
Atetosis/genética , Corea/genética , Hipotiroidismo Congénito/genética , Mutación , Proteínas Nucleares/genética , Síndrome de Dificultad Respiratoria del Recién Nacido/genética , Factores de Transcripción/genética , Niño , Preescolar , Humanos , Lactante , Masculino , Factor Nuclear Tiroideo 1
11.
Gene ; 539(1): 157-61, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24508941

RESUMEN

Oculodentodigital dysplasia (ODDD) is a clinically variable genetic disorder caused by mutations of the GJA1 gene, predominantly inherited in an autosomal dominant fashion. In rare cases ODDD can also exhibit autosomal recessive mode of inheritance. The phenotype of ODDD comprises craniofacial (short and narrow palpebral fissure, thin, narrow nose with hypoplastic alae nasi), dental (oligodontia, hypoplastic enamel), and digital abnormalities (syndactyly of finger 4/5, hypoplastic phalanges). Ocular manifestation is typical and involves microphthalmia, microcornea, glaucoma, congenital malformations of iris or vitreous, ectopic pupils or strabismus. To date, only 67 GJA1 mutations have been described to underlie ODDD and most of them (i.e. 97%) represent missense substitutions. In this report, we describe three (two familial and one sporadic) non-consanguineous cases presenting with ODDD features in whom we identified novel missense heterozygous mutations of the GJA1 gene: c.317T>G (p. L106R), c.G139C (p.D47H), and c.C257A (p.S86Y). The first two mutations were inherited from an affected parent, whereas the latter one occurred de novo. The mutations affect highly conserved amino acid residues located in the different portions of the GJA1 protein. Our report broadens the spectrum of probably pathogenic mutations associated with ODDD phenotype and demonstrates that the amino acid substitutions at highly conserved positions 47, 86, 106 may affect protein functioning and lead to the development of this syndrome. Together with molecular data, we provide a brief clinical description of the affected individuals.


Asunto(s)
Anomalías Múltiples/genética , Conexina 43/genética , Anomalías Craneofaciales/genética , Anomalías del Ojo/genética , Deformidades Congénitas del Pie/genética , Deformidades Congénitas de las Extremidades/genética , Sindactilia/genética , Anomalías Dentarias/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Preescolar , Facies , Femenino , Dedos/anomalías , Humanos , Masculino , Mutación Missense/genética , Análisis de Secuencia de ADN
12.
Pediatr Nephrol ; 23(10): 1779-86, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18594871

RESUMEN

Galloway-Mowat syndrome (GMS) is a rare autosomal recessive disorder characterized by early onset nephrotic syndrome and microcephaly with various anomalies of the central nervous system. GMS likely represents a heterogeneous group of disorders with hitherto unknown genetic etiology. The clinical phenotype to some extent overlaps that of Pierson syndrome (PS), which comprises congenital nephrotic syndrome and distinct ocular abnormalities but which may also include neurodevelopmental deficits and microcephaly. PS is caused by mutations of LAMB2, the gene encoding laminin beta2. We hypothesized that GMS might be allelic to PS or be caused by defects in proteins that interact with laminin beta2. In a cohort of 18 patients with GMS or a GMS-like phenotype we therefore analyzed the genes encoding laminin beta2 (LAMB2), laminin alpha5 (LAMA5), alpha3-integrin (ITGA3), beta1-integrin (ITGB1) and alpha-actinin-4 (ACTN4), but we failed to find causative mutations in these genes. We inferred that LAMA5, ITGA3, ITGB1, and ACTN4 are not directly involved in the pathogenesis of GMS. We excluded LAMB2 as a candidate gene for GMS. Further studies are required, including linkage analysis in families with GMS to identify genes underlying this disease.


Asunto(s)
Discapacidad Intelectual/genética , Laminina/genética , Microcefalia/genética , Síndrome Nefrótico/genética , Actinina/genética , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Mutación , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA