Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Syst Biol ; 70(4): 786-802, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33367817

RESUMEN

The phylogeny and systematics of fur seals and sea lions (Otariidae) have long been studied with diverse data types, including an increasing amount of molecular data. However, only a few phylogenetic relationships have reached acceptance because of strong gene-tree species tree discordance. Divergence times estimates in the group also vary largely between studies. These uncertainties impeded the understanding of the biogeographical history of the group, such as when and how trans-equatorial dispersal and subsequent speciation events occurred. Here, we used high-coverage genome-wide sequencing for 14 of the 15 species of Otariidae to elucidate the phylogeny of the family and its bearing on the taxonomy and biogeographical history. Despite extreme topological discordance among gene trees, we found a fully supported species tree that agrees with the few well-accepted relationships and establishes monophyly of the genus Arctocephalus. Our data support a relatively recent trans-hemispheric dispersal at the base of a southern clade, which rapidly diversified into six major lineages between 3 and 2.5 Ma. Otaria diverged first, followed by Phocarctos and then four major lineages within Arctocephalus. However, we found Zalophus to be nonmonophyletic, with California (Zalophus californianus) and Steller sea lions (Eumetopias jubatus) grouping closer than the Galapagos sea lion (Zalophus wollebaeki) with evidence for introgression between the two genera. Overall, the high degree of genealogical discordance was best explained by incomplete lineage sorting resulting from quasi-simultaneous speciation within the southern clade with introgresssion playing a subordinate role in explaining the incongruence among and within prior phylogenetic studies of the family. [Hybridization; ILS; phylogenomics; Pleistocene; Pliocene; monophyly.].


Asunto(s)
Sustancias Explosivas , Lobos Marinos , Leones Marinos , Animales , Secuencia de Bases , Lobos Marinos/genética , Filogenia , Leones Marinos/genética
2.
Ecol Evol ; 13(2): e9790, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36789339

RESUMEN

Information on resource use and trophic dynamics of marine predators is important for understanding their role in ecosystem functioning and predicting population-level responses to environmental change. Where separate populations experience different local environmental conditions, geographic variability in their foraging ecology is often expected. Within populations, individuals also vary in morphology, physiology, and experience, resulting in specialization in resource use. In this context, isotopic compositions of incrementally grown tissues such as keratinous hairs offer a valuable opportunity to study long-term variation in resource and habitat use. We investigated the trophic ecology of female Cape fur seals (Arctocephalus pusillus pusillus) using carbon and nitrogen isotopic compositions of serially sampled whiskers collected at four breeding sites along the coast of South Africa. Drawing on over 900 isotopic measurements, we assessed geographic variability in isotopic niche width between colonies and the degree of individual specialization. We found slight, but clear geographic differences in isotopic ratios and isotopic niche widths, seemingly related to ecological setting, with niche widths being proportional to the area of available shelf and shelf-slope habitat surrounding the colony. We further identified periodic oscillations in isotopic ratios, which likely reflect temporal patterns in foraging distribution and prey type, linked to shifts in the availability of prey resources and their interaction with constraints on individual females throughout their breeding cycle. Finally, individual specialization indices revealed that each of the study populations contain specialist individuals that utilize only a small subset of the total population niche width. The degree of individual specialization was, however, not consistent across colonies and may reflect an interactive influence between density-dependent effects and habitat heterogeneity. Overall, this study provides important information on the trophic ecology of Cape fur seals breeding in South Africa and highlights the need to consider geographic and individual variability when assessing the foraging ecology of marine predators.

3.
PLoS One ; 15(10): e0227085, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33044970

RESUMEN

Coastally distributed dolphin species are vulnerable to a variety of anthropogenic pressures, yet a lack of abundance data often prevents data-driven conservation management strategies from being implemented. We investigated the abundance of Indo-Pacific bottlenose dolphins (Tursiops aduncus) along the south coast of South Africa, from the Goukamma Marine Protected Area (MPA) to the Tsitsikamma MPA, between 2014 and 2016. During this period, 662.3h of boat-based photo-identification survey effort was carried out during 189 surveys. The sighting histories of 817 identified individuals were used to estimate abundance using capture-recapture modelling. Using open population (POPAN) models, we estimated that 2,155 individuals (95% CI: 1,873-2,479) occurred in the study area, although many individuals appeared to be transients. We recorded smaller group sizes and an apparent decline in abundance in a subset of the study area (Plettenberg Bay) compared to estimates obtained in 2002-2003 at this location. We recorded declines of more than 70% in both abundance and group size for a subset of the study area (Plettenberg Bay), in relation to estimates obtained in 2002-2003 at this location. We discuss plausible hypotheses for causes of the declines, including anthropogenic pressure, ecosystem change, and methodological inconsistencies. Our study highlights the importance of assessing trends in abundance at other locations to inform data-driven conservation management strategies of T. aduncus in South Africa.


Asunto(s)
Delfín Mular/fisiología , Conservación de los Recursos Naturales/métodos , Animales , Fotograbar , Densidad de Población , Dinámica Poblacional , Sudáfrica
4.
PLoS One ; 12(3): e0172002, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28249036

RESUMEN

Southern Hemisphere humpback whales (Megaptera novaeangliae) generally undertake annual migrations from polar summer feeding grounds to winter calving and nursery grounds in subtropical and tropical coastal waters. Evidence for such migrations arises from seasonality of historic whaling catches by latitude, Discovery and natural mark returns, and results of satellite tagging studies. Feeding is generally believed to be limited to the southern polar region, where Antarctic krill (Euphausia superba) has been identified as the primary prey item. Non-migrations and / or suspended migrations to the polar feeding grounds have previously been reported from a summer presence of whales in the Benguela System, where feeding on euphausiids (E. lucens), hyperiid amphipods (Themisto gaudichaudii), mantis shrimp (Pterygosquilla armata capensis) and clupeid fish has been described. Three recent research cruises (in October/November 2011, October/November 2014 and October/November 2015) identified large tightly-spaced groups (20 to 200 individuals) of feeding humpback whales aggregated over at least a one-month period across a 220 nautical mile region of the southern Benguela System. Feeding behaviour was identified by lunges, strong milling and repetitive and consecutive diving behaviours, associated bird and seal feeding, defecations and the pungent "fishy" smell of whale blows. Although no dedicated prey sampling could be carried out within the tightly spaced feeding aggregations, observations of E. lucens in the region of groups and the full stomach contents of mantis shrimp from both a co-occurring predatory fish species (Thyrsites atun) and one entangled humpback whale mortality suggest these may be the primary prey items of at least some of the feeding aggregations. Reasons for this recent novel behaviour pattern remain speculative, but may relate to increasing summer humpback whale abundance in the region. These novel, predictable, inter-annual, low latitude feeding events provide considerable potential for further investigation of Southern Hemisphere humpback feeding behaviours in these relatively accessible low-latitude waters.


Asunto(s)
Migración Animal/fisiología , Conducta Alimentaria/fisiología , Yubarta/fisiología , Estaciones del Año , Animales , Femenino , Masculino
5.
PLoS One ; 11(5): e0152370, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27163373

RESUMEN

Foraging behaviour of marine top predators is increasingly being used to identify areas of ecological importance. This is largely enabled by the ability of many such species to forage extensively in search of prey that is often concentrated in oceanographically productive areas. To identify important habitat in the Southern Indian Ocean within and around South Africa's Prince Edward Islands' Marine Protected Area (MPA), satellite transmitters were deployed on 12 lactating Subantarctic fur seals Arctocephalus tropicalis at Prince Edward Island (PEI) itself. Switching state space models were employed to correct ARGOS tracks and estimate behavioural states for locations along predicted tracks, namely travelling or area restricted search (ARS). A random forest model showed that distance from the study colony, longitude and distance from the Subantarctic Front were the most important predictors of suitable foraging habitat (inferred from ARS). Model-predicted suitable habitat occurred within the MPA in relatively close access to the colony during summer and autumn, but shifted northwards concurrently with frontal movements in winter and spring. The association of ARS with the MPA during summer-autumn was highly significant, highlighting the effectiveness of the recently declared reserve's design for capturing suitable foraging habitat for this and probably other marine top predator species.


Asunto(s)
Ecosistema , Lobos Marinos/fisiología , Lactancia , Conducta Predatoria , Animales , Femenino , Océano Índico , Modelos Teóricos , Estaciones del Año , Sudáfrica
6.
PLoS One ; 5(1): e8677, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20090942

RESUMEN

BACKGROUND: ARGOS satellite telemetry is one of the most widely used methods to track the movements of free-ranging marine and terrestrial animals and is fundamental to studies of foraging ecology, migratory behavior and habitat-use. ARGOS location estimates do not include complete error estimations, and for many marine organisms, the most commonly acquired locations (Location Class 0, A, B, or Z) are provided with no declared error estimate. METHODOLOGY/PRINCIPAL FINDINGS: We compared the accuracy of ARGOS Locations to those obtained using Fastloc GPS from the same electronic tags on five species of pinnipeds: 9 California sea lions (Zalophus californianus), 4 Galapagos sea lions (Zalophus wollebaeki), 6 Cape fur seals (Arctocephalus pusillus pusillus), 3 Australian fur seals (A. p. doriferus) and 5 northern elephant seals (Mirounga angustirostris). These species encompass a range of marine habitats (highly pelagic vs coastal), diving behaviors (mean dive durations 2-21 min) and range of latitudes (equator to temperate). A total of 7,318 ARGOS positions and 27,046 GPS positions were collected. Of these, 1,105 ARGOS positions were obtained within five minutes of a GPS position and were used for comparison. The 68(th) percentile ARGOS location errors as measured in this study were LC-3 0.49 km, LC-2 1.01 km, LC-1 1.20 km, LC-0 4.18 km, LC-A 6.19 km, LC-B 10.28 km. CONCLUSIONS/SIGNIFICANCE: The ARGOS errors measured here are greater than those provided by ARGOS, but within the range of other studies. The error was non-normally distributed with each LC highly right-skewed. Locations of species that make short duration dives and spend extended periods on the surface (sea lions and fur seals) had less error than species like elephant seals that spend more time underwater and have shorter surface intervals. Supplemental data (S1) are provided allowing the creation of density distributions that can be used in a variety of filtering algorithms to improve the quality of ARGOS tracking data.


Asunto(s)
Migración Animal , Caniformia/fisiología , Sistemas de Información Geográfica , Animales , Caniformia/clasificación , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA