Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur Respir J ; 59(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34561286

RESUMEN

BACKGROUND: Biomarkers of disease progression and treatment response are urgently needed for patients with lymphangioleiomyomatosis (LAM). Activity-based nanosensors, an emerging biosensor class, detect dysregulated proteases in vivo and release a reporter to provide a urinary readout of disease. Because proteases are dysregulated in LAM and may directly contribute to lung function decline, activity-based nanosensors may enable quantitative, real-time monitoring of LAM progression and treatment response. We aimed to assess the diagnostic utility of activity-based nanosensors in a pre-clinical model of pulmonary LAM. METHODS: Tsc2-null cells were injected intravenously into female nude mice to establish a mouse model of pulmonary LAM. A library of 14 activity-based nanosensors, designed to detect proteases across multiple catalytic classes, was administered into the lungs of LAM mice and healthy controls, urine was collected, and mass spectrometry was performed to measure nanosensor cleavage products. Mice were then treated with rapamycin and monitored with activity-based nanosensors. Machine learning was performed to distinguish diseased from healthy and treated from untreated mice. RESULTS: Multiple activity-based nanosensors (PP03 (cleaved by metallo, aspartic and cysteine proteases), padjusted<0.0001; PP10 (cleaved by serine, aspartic and cysteine proteases), padjusted=0.017)) were differentially cleaved in diseased and healthy lungs, enabling strong classification with a machine learning model (area under the curve (AUC) 0.95 from healthy). Within 2 days after rapamycin initiation, we observed normalisation of PP03 and PP10 cleavage, and machine learning enabled accurate classification of treatment response (AUC 0.94 from untreated). CONCLUSIONS: Activity-based nanosensors enable noninvasive, real-time monitoring of disease burden and treatment response in a pre-clinical model of LAM.


Asunto(s)
Proteasas de Cisteína , Linfangioleiomiomatosis , Animales , Proteasas de Cisteína/uso terapéutico , Femenino , Humanos , Linfangioleiomiomatosis/tratamiento farmacológico , Ratones , Ratones Desnudos , Péptido Hidrolasas/uso terapéutico , Sirolimus/uso terapéutico
2.
Sci Adv ; 10(1): eadj9591, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38181080

RESUMEN

Although low-dose computed tomography screening improves lung cancer survival in at-risk groups, inequality remains in lung cancer diagnosis due to limited access to and high costs of medical imaging infrastructure. We designed a needleless and imaging-free platform, termed PATROL (point-of-care aerosolizable nanosensors with tumor-responsive oligonucleotide barcodes), to reduce resource disparities for early detection of lung cancer. PATROL formulates a set of DNA-barcoded, activity-based nanosensors (ABNs) into an inhalable format. Lung cancer-associated proteases selectively cleave the ABNs, releasing synthetic DNA reporters that are eventually excreted via the urine. The urinary signatures of barcoded nanosensors are quantified within 20 min at room temperature using a multiplexable paper-based lateral flow assay. PATROL detects early-stage tumors in an autochthonous lung adenocarcinoma mouse model with high sensitivity and specificity. Tailoring the library of ABNs may enable not only the modular PATROL platform to lower the resource threshold for lung cancer early detection tools but also the rapid detection of chronic pulmonary disorders and infections.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Animales , Ratones , Sistemas de Atención de Punto , Neoplasias Pulmonares/diagnóstico , Modelos Animales de Enfermedad , ADN
3.
Science ; 383(6680): eadf2341, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38236959

RESUMEN

Liquid biopsies enable early detection and monitoring of diseases such as cancer, but their sensitivity remains limited by the scarcity of analytes such as cell-free DNA (cfDNA) in blood. Improvements to sensitivity have primarily relied on enhancing sequencing technology ex vivo. We sought to transiently augment the level of circulating tumor DNA (ctDNA) in a blood draw by attenuating its clearance in vivo. We report two intravenous priming agents given 1 to 2 hours before a blood draw to recover more ctDNA. Our priming agents consist of nanoparticles that act on the cells responsible for cfDNA clearance and DNA-binding antibodies that protect cfDNA. In tumor-bearing mice, they greatly increase the recovery of ctDNA and improve the sensitivity for detecting small tumors.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias , Animales , Ratones , Biomarcadores de Tumor/sangre , Ácidos Nucleicos Libres de Células/sangre , ADN Tumoral Circulante/sangre , Biopsia Líquida , Mutación , Neoplasias/sangre , Neoplasias/diagnóstico , Humanos , Femenino , Ratones Endogámicos BALB C , Sensibilidad y Especificidad
4.
Science ; 379(6630): eabn8934, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36701450

RESUMEN

The structural integrity of vaccine antigens is critical to the generation of protective antibody responses, but the impact of protease activity on vaccination in vivo is poorly understood. We characterized protease activity in lymph nodes and found that antigens were rapidly degraded in the subcapsular sinus, paracortex, and interfollicular regions, whereas low protease activity and antigen degradation rates were detected in the vicinity of follicular dendritic cells (FDCs). Correlated with these findings, immunization regimens designed to target antigen to FDCs led to germinal centers dominantly targeting intact antigen, whereas traditional immunizations led to much weaker responses that equally targeted the intact immunogen and antigen breakdown products. Thus, spatially compartmentalized antigen proteolysis affects humoral immunity and can be exploited.


Asunto(s)
Linfocitos B , Endopeptidasas , Inmunización , Ganglios Linfáticos , Vacunación , Animales , Humanos , Ratones , Antígenos/inmunología , Linfocitos B/enzimología , Endopeptidasas/metabolismo , Centro Germinal/enzimología , Ganglios Linfáticos/enzimología , Proteolisis
5.
Nat Commun ; 13(1): 5745, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192379

RESUMEN

Diverse processes in cancer are mediated by enzymes, which most proximally exert their function through their activity. High-fidelity methods to profile enzyme activity are therefore critical to understanding and targeting the pathological roles of enzymes in cancer. Here, we present an integrated set of methods for measuring specific protease activities across scales, and deploy these methods to study treatment response in an autochthonous model of Alk-mutant lung cancer. We leverage multiplexed nanosensors and machine learning to analyze in vivo protease activity dynamics in lung cancer, identifying significant dysregulation that includes enhanced cleavage of a peptide, S1, which rapidly returns to healthy levels with targeted therapy. Through direct on-tissue localization of protease activity, we pinpoint S1 cleavage to the tumor vasculature. To link protease activity to cellular function, we design a high-throughput method to isolate and characterize proteolytically active cells, uncovering a pro-angiogenic phenotype in S1-cleaving cells. These methods provide a framework for functional, multiscale characterization of protease dysregulation in cancer.


Asunto(s)
Neoplasias Pulmonares , Péptido Hidrolasas , Endopeptidasas , Humanos , Neoplasias Pulmonares/genética , Péptido Hidrolasas/metabolismo , Proteolisis , Proteínas Tirosina Quinasas Receptoras
6.
Cancer Res ; 81(1): 213-224, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33106334

RESUMEN

Recent years have seen the emergence of conditionally activated diagnostics and therapeutics that leverage protease-cleavable peptide linkers to enhance their specificity for cancer. However, due to a lack of methods to measure and localize protease activity directly within the tissue microenvironment, the design of protease-activated agents has been necessarily empirical, yielding suboptimal results when translated to patients. To address the need for spatially resolved protease activity profiling in cancer, we developed a new class of in situ probes that can be applied to fresh-frozen tissue sections in a manner analogous to immunofluorescence staining. These activatable zymography probes (AZP) detected dysregulated protease activity in human prostate cancer biopsy samples, enabling disease classification. AZPs were leveraged within a generalizable framework to design conditional cancer diagnostics and therapeutics and showcased in the Hi-Myc mouse model of prostate cancer, which models features of early pathogenesis. Multiplexed screening against barcoded substrates yielded a peptide, S16, that was robustly and specifically cleaved by tumor-associated metalloproteinases in the Hi-Myc model. In situ labeling with an AZP incorporating S16 revealed a potential role of metalloproteinase dysregulation in proliferative, premalignant Hi-Myc prostatic glands. Systemic administration of an in vivo imaging probe incorporating S16 perfectly classified diseased and healthy prostates, supporting the relevance of ex vivo activity assays to in vivo translation. We envision AZPs will enable new insights into the biology of protease dysregulation in cancer and accelerate the development of conditional diagnostics and therapeutics for multiple cancer types. SIGNIFICANCE: Visualization of protease activity within the native tissue context using AZPs provides new biological insights into protease dysregulation in cancer and guides the design of conditional diagnostics and therapeutics.


Asunto(s)
Modelos Animales de Enfermedad , Sondas Moleculares/química , Péptido Hidrolasas/análisis , Péptido Hidrolasas/metabolismo , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Humanos , Masculino , Ratones , Imagen Molecular , Neoplasias de la Próstata/enzimología , Proteolisis
7.
Sci Transl Med ; 12(537)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32238573

RESUMEN

Lung cancer is the leading cause of cancer-related death, and patients most commonly present with incurable advanced-stage disease. U.S. national guidelines recommend screening for high-risk patients with low-dose computed tomography, but this approach has limitations including high false-positive rates. Activity-based nanosensors can detect dysregulated proteases in vivo and release a reporter to provide a urinary readout of disease activity. Here, we demonstrate the translational potential of activity-based nanosensors for lung cancer by coupling nanosensor multiplexing with intrapulmonary delivery and machine learning to detect localized disease in two immunocompetent genetically engineered mouse models. The design of our multiplexed panel of sensors was informed by comparative transcriptomic analysis of human and mouse lung adenocarcinoma datasets and in vitro cleavage assays with recombinant candidate proteases. Intrapulmonary administration of the nanosensors to a Kras- and Trp53-mutant lung adenocarcinoma mouse model confirmed the role of metalloproteases in lung cancer and enabled accurate detection of localized disease, with 100% specificity and 81% sensitivity. Furthermore, this approach generalized to an alternative autochthonous model of lung adenocarcinoma, where it detected cancer with 100% specificity and 95% sensitivity and was not confounded by lipopolysaccharide-driven lung inflammation. These results encourage the clinical development of activity-based nanosensors for the detection of lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Péptido Hidrolasas , Adenocarcinoma/genética , Adenocarcinoma del Pulmón/diagnóstico , Adenocarcinoma del Pulmón/genética , Animales , Genes ras , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Ratones , Péptido Hidrolasas/orina , Urinálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA