Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Mol Life Sci ; 73(23): 4547-4557, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27188285

RESUMEN

Stress is among the primary causes of mental health disorders, which are the most common reason for disability worldwide. The ubiquity of these disorders, and the costs associated with them, lends a sense of urgency to the efforts to improve prediction and prevention. Down-stream metabolic changes are highly feasible and accessible indicators of pathophysiological processes underlying mental health disorders. Here, we show that remote and cumulative ancestral stress programs central metabolic pathways linked to mental health disorders. The studies used a rat model consisting of a multigenerational stress lineage (the great-great-grandmother and each subsequent generation experienced stress during pregnancy) and a transgenerational stress lineage (only the great-great-grandmother was stressed during pregnancy). Urine samples were collected from adult male F4 offspring and analyzed using 1H NMR spectroscopy. The results of variable importance analysis based on random variable combination were used for unsupervised multivariate principal component analysis and hierarchical clustering analysis, as well as metabolite set enrichment analysis (MSEA) and pathway analysis. We identified distinct metabolic profiles associated with the multigenerational and transgenerational stress phenotype, with consistent upregulation of hippurate and downregulation of tyrosine, threonine, and histamine. MSEA and pathway analysis showed that these metabolites are involved in catecholamine biosynthesis, immune responses, and microbial host interactions. The identification of metabolic signatures linked to ancestral programming assists in the discovery of gene targets for future studies of epigenetic regulation in pathogenic processes. Ultimately, this research can lead to biomarker discovery for better prediction and prevention of mental health disorders.


Asunto(s)
Salud Mental , Redes y Vías Metabólicas , Estrés Psicológico/metabolismo , Animales , Conducta Animal , Composición Familiar , Metaboloma , Fenotipo , Análisis de Componente Principal , Ratas Long-Evans
2.
Aging (Albany NY) ; 12(4): 3828-3847, 2020 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-32087063

RESUMEN

The incidence of non-communicable diseases (NCDs) is rising globally but their causes are generally not understood. Here we show that cumulative ancestral stress leads to premature aging and raises NCD risk in a rat population. This longitudinal study revealed that cumulative multigenerational prenatal stress (MPS) across four generations (F0-F3) raises age- and sex-dependent adverse health outcomes in F4 offspring. MPS accelerated biological aging processes and exacerbated sex-specific incidences of respiratory and kidney diseases, inflammatory processes and tumors. Unbiased deep sequencing of frontal cortex revealed that MPS altered expression of microRNAs and their target genes involved in synaptic plasticity, stress regulation, immune function and longevity. Multi-layer top-down deep learning metabolite enrichment analysis of urine markers revealed altered metabolic homeodynamics in MPS males. Thus, peripheral metabolic signatures may provide sensitive biomarkers of stress vulnerability and disease risk. Programming by MPS appears to be a significant determinant of lifetime mental health trajectories, physical wellbeing and vulnerability to NCDs through altered epigenetic regulation.


Asunto(s)
Envejecimiento , Epigénesis Genética , Enfermedades no Transmisibles , Estrés Psicológico , Animales , Femenino , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Ratas
3.
Environ Epigenet ; 5(1): dvz005, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31065381

RESUMEN

Determinants of lifetime health are complex and emphasize the need for robust predictors of disease risk. Allostatic load (AL) has become a clinical framework to estimate the cumulative biological burden associated with chronic stress. To assist knowledge translation in the developmental origins of health and disease field, clinically valid methods for reliable AL assessment in experimental models are urgently needed. Here, we introduce the rat cumulative allostatic load measure (rCALM), as a new preclinical knowledge translation tool to assess the burden of chronic stress. First, we identified an array of stress-associated physiological markers that are particularly sensitive to hypothalamic-pituitary-adrenal axis dysregulation by ancestral prenatal stress. Second, we determined which of these markers are susceptible to an intervention by environmental enrichment (EE) to mitigate AL. The markers most responsive to stress and EE therapy were assembled to become operationalized in the rCALM. Third, the new rCALM was validated for the ability to indicate future disease risks. The results show that the rCALM estimates the burden of chronic stress and serves as a proxy to estimate stress resilience and vulnerability to disease. Using the rCALM we showed that enrichment therapy can offset the adverse health outcomes linked to a high AL. Thus, the rCALM provides a model for the development of new test strategies that facilitate knowledge translation in preclinical animal models.

4.
Sci Rep ; 8(1): 12932, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154530

RESUMEN

Prenatal stress is known to epigenetically program offspring physiology and behaviour, and may become a risk factor for adult complex diseases. To gain insight into the underlying environment-gene interactions, we used proton nuclear magnetic resonance spectroscopy to analyze urinary metabolomes of male and female adolescents who were in utero during the 1998 Quebec Ice Storm. Metabolomic profiles in adolescent groups were found to be significantly different. Higher prenatal stress exposure generated alterations in metabolic pathways involved in energy metabolism and protein biosynthesis, such as branched-chain amino acid synthesis, alanine metabolism, and ketone body metabolism. Dysregulation of energy and protein metabolism suggests an increased risk of metabolic diseases like insulin resistance, diabetes, and obesity. These findings are consistent with prior observations of physiological phenotypes from this cohort. Understanding the impact of natural disasters on health risks will provide new and improved therapeutic strategies to mitigate stress-associated adverse health outcomes. Using metabolomic biomarkers may also assist in the prediction and prevention of these adverse outcomes.


Asunto(s)
Frío/efectos adversos , Exposición Materna/efectos adversos , Metaboloma , Efectos Tardíos de la Exposición Prenatal/orina , Adolescente , Alanina/metabolismo , Biomarcadores/orina , Metabolismo Energético , Femenino , Humanos , Cuerpos Cetónicos/metabolismo , Masculino , Embarazo
5.
Front Microbiol ; 7: 1239, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27582730

RESUMEN

Fusarium head blight (FHB) is a disease of cereal crops caused by trichothecene producing Fusarium species. Trichothecenes, macrocylicic fungal metabolites composed of three fused rings (A-C) with one epoxide functionality, are a class of mycotoxins known to inhibit protein synthesis in eukaryotic ribosomes. These toxins accumulate in the kernels of infected plants rendering them unsuitable for human and animal consumption. Among the four classes of trichothecenes (A-D) A and B are associated with FHB, where the type B trichothecene deoxynivalenol (DON) is most relevant. While it is known that these toxins inhibit protein synthesis by disrupting peptidyl transferase activity, the exact mechanism of this inhibition is poorly understood. The three-dimensional structures and H-bonding behavior of DON were evaluated using one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy techniques. Comparisons of the NMR structure presented here with the recently reported crystal structure of DON bound in the yeast ribosome reveal insights into the possible toxicity mechanism of this compound. The work described herein identifies a water binding pocket in the core structure of DON, where the 3OH plays an important role in this interaction. These results provide preliminary insights into how substitution at C3 reduces trichothecene toxicity. Further investigations along these lines will provide opportunities to develop trichothecene remediation strategies based on the disruption of water binding interactions with 3OH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA