Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Immunol ; 12: 684052, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149724

RESUMEN

Background: With increasing clinical use of NK-92 cells and their CAR-modified derivatives in cancer immunotherapy, there is a growing demand for efficient production processes of these "off-the-shelf" therapeutics. In order to ensure safety and prevent the occurrence of secondary tumors, (CAR-)NK-92 cell proliferation has to be inactivated before transfusion. This is commonly achieved by gamma irradiation. Recently, we showed proof of concept that low energy electron irradiation (LEEI) is a new method for NK-92 inactivation. LEEI has several advantages over gamma irradiation, including a faster reaction time, a more reproducible dose rate and much less requirements on radiation shielding. Here, LEEI was further evaluated as a promising alternative to gamma irradiation yielding cells with highly maintained cytotoxic effector function. Methods: Effectiveness and efficiency of LEEI and gamma irradiation were analyzed using NK-92 and CD123-directed CAR-NK-92 cells. LEE-irradiated cells were extensively characterized and compared to gamma-irradiated cells via flow cytometry, cytotoxicity assays, and comet assays, amongst others. Results: Our results show that both irradiation methods caused a progressive decrease in cell viability and are, therefore, suitable for inhibition of cell proliferation. Notably, the NK-mediated specific lysis of tumor cells was maintained at stable levels for three days post-irradiation, with a trend towards higher activities after LEEI treatment as compared to gamma irradiation. Both gamma irradiation as well as LEEI led to substantial DNA damage and an accumulation of irradiated cells in the G2/M cell cycle phases. In addition, transcriptomic analysis of irradiated cells revealed approximately 12-fold more differentially expressed genes two hours after gamma irradiation, compared to LEEI. Analysis of surface molecules revealed an irradiation-induced decrease in surface expression of CD56, but no changes in the levels of the activating receptors NKp46, NKG2D, or NKp30. Conclusions: The presented data show that LEEI inactivates (CAR-)NK-92 cells as efficiently as gamma irradiation, but with less impact on the overall gene expression. Due to logistic advantages, LEEI might provide a superior alternative for the manufacture of (CAR-)NK-92 cells for clinical application.


Asunto(s)
Proliferación Celular/efectos de la radiación , Daño del ADN , Rayos gamma , Células Asesinas Naturales/citología , Células Asesinas Naturales/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular , Electrones , Citometría de Flujo , Humanos
2.
Front Immunol ; 11: 1280, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849491

RESUMEN

The use of biomarkers in diagnosis, therapy and prognosis has gained increasing interest over the last decades. In particular, the analysis of biomarkers in cancer patients within the pre- and post-therapeutic period is required to identify several types of cells, which carry a risk for a disease progression and subsequent post-therapeutic relapse. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and can cause relapses. At the time point of tumor initiation, CSCs originate from either differentiated cells or adult tissue resident stem cells. Due to their importance, several biomarkers that characterize CSCs have been identified and correlated to diagnosis, therapy and prognosis. However, CSCs have been shown to display a high plasticity, which changes their phenotypic and functional appearance. Such changes are induced by chemo- and radiotherapeutics as well as senescent tumor cells, which cause alterations in the tumor microenvironment. Induction of senescence causes tumor shrinkage by modulating an anti-tumorigenic environment in which tumor cells undergo growth arrest and immune cells are attracted. Besides these positive effects after therapy, senescence can also have negative effects displayed post-therapeutically. These unfavorable effects can directly promote cancer stemness by increasing CSC plasticity phenotypes, by activating stemness pathways in non-CSCs, as well as by promoting senescence escape and subsequent activation of stemness pathways. At the end, all these effects can lead to tumor relapse and metastasis. This review provides an overview of the most frequently used CSC markers and their implementation as biomarkers by focussing on deadliest solid (lung, stomach, liver, breast and colorectal cancers) and hematological (acute myeloid leukemia, chronic myeloid leukemia) cancers. Furthermore, it gives examples on how the CSC markers might be influenced by therapeutics, such as chemo- and radiotherapy, and the tumor microenvironment. It points out, that it is crucial to identify and monitor residual CSCs, senescent tumor cells, and the pro-tumorigenic senescence-associated secretory phenotype in a therapy follow-up using specific biomarkers. As a future perspective, a targeted immune-mediated strategy using chimeric antigen receptor based approaches for the removal of remaining chemotherapy-resistant cells as well as CSCs in a personalized therapeutic approach are discussed.


Asunto(s)
Biomarcadores , Neoplasias/etiología , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Biomarcadores de Tumor , Senescencia Celular , Terapia Combinada , Manejo de la Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Resistencia a Antineoplásicos , Humanos , Inmunoterapia Adoptiva , Técnicas de Diagnóstico Molecular , Terapia Molecular Dirigida , Neoplasias/diagnóstico , Neoplasias/terapia , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Especificidad de Órganos , Medicina de Precisión/métodos , Pronóstico
4.
Sci Rep ; 10(1): 12786, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732876

RESUMEN

Ionizing radiation is widely used to inactivate pathogens. It mainly acts by destroying nucleic acids but causes less damage to structural components like proteins. It is therefore highly suited for the sterilization of biological samples or the generation of inactivated vaccines. However, inactivation of viruses or bacteria requires relatively high doses and substantial amounts of radiation energy. Consequently, irradiation is restricted to shielded facilities-protecting personnel and the environment. We have previously shown that low energy electron irradiation (LEEI) has the same capacity to inactivate pathogens in liquids as current irradiation methods, but generates much less secondary X-ray radiation, which enables the use in normal laboratories by self-shielded irradiation equipment. Here, we present concepts for automated LEEI of liquids, in disposable bags or as a continuous process. As the electrons have a limited penetration depth, the liquid is transformed into a thin film. High concentrations of viruses (Influenza, Zika virus and Respiratory Syncytial Virus), bacteria (E. coli, B. cereus) and eukaryotic cells (NK-92 cell line) are efficiently inactivated by LEEI in a throughput suitable for various applications such as sterilization, vaccine manufacturing or cell therapy. Our results validate the premise that for pathogen and cell inactivation in liquids, LEEI represents a suitable and versatile irradiation method for standard biological research and production laboratories.


Asunto(s)
Investigación Biomédica , Electrones , Laboratorios , Protección Radiológica/métodos , Radiación Ionizante , Esterilización/métodos , Tratamiento Basado en Trasplante de Células y Tejidos , Escherichia coli , Células Eucariotas , Orthomyxoviridae , Exposición a la Radiación/prevención & control , Protección Radiológica/instrumentación , Virus Sincitiales Respiratorios , Vacunas de Productos Inactivados , Virus Zika
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA