Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Biol Evol ; 40(7)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37463421

RESUMEN

For over 10,000 years, Andeans have resided at high altitude where the partial pressure of oxygen challenges human survival. Recent studies have provided evidence for positive selection acting in Andeans on the HIF2A (also known as EPAS1) locus, which encodes for a central transcription factor of the hypoxia-inducible factor pathway. However, the precise mechanism by which this allele might lead to altitude-adaptive phenotypes, if any, is unknown. By analyzing whole genome sequencing data from 46 high-coverage Peruvian Andean genomes, we confirm evidence for positive selection acting on HIF2A and a unique pattern of variation surrounding the Andean-specific single nucleotide variant (SNV), rs570553380, which encodes for an H194R amino acid substitution in HIF-2α. Genotyping the Andean-associated SNV rs570553380 in a group of 299 Peruvian Andeans from Cerro de Pasco, Peru (4,338 m), reveals a positive association with increased fraction of exhaled nitric oxide, a marker of nitric oxide biosynthesis. In vitro assays show that the H194R mutation impairs binding of HIF-2α to its heterodimeric partner, aryl hydrocarbon receptor nuclear translocator. A knockin mouse model bearing the H194R mutation in the Hif2a gene displays decreased levels of hypoxia-induced pulmonary Endothelin-1 transcripts and protection against hypoxia-induced pulmonary hypertension. We conclude the Andean H194R HIF2A allele is a hypomorphic (partial loss of function) allele.


Asunto(s)
Altitud , Óxido Nítrico , Animales , Humanos , Ratones , Adaptación Fisiológica/genética , Alelos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hipoxia/genética
2.
Proc Natl Acad Sci U S A ; 116(48): 24006-24011, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31712437

RESUMEN

Highland native Andeans have resided at altitude for millennia. They display high aerobic capacity (VO2max) at altitude, which may be a reflection of genetic adaptation to hypoxia. Previous genomewide (GW) scans for natural selection have nominated Egl-9 homolog 1 gene (EGLN1) as a candidate gene. The encoded protein, EGLN1/PHD2, is an O2 sensor that controls levels of the Hypoxia Inducible Factor-α (HIF-α), which regulates the cellular response to hypoxia. From GW association and analysis of covariance performed on a total sample of 429 Peruvian Quechua and 94 US lowland referents, we identified 5 EGLN1 SNPs associated with higher VO2max (L⋅min-1 and mL⋅min-1⋅kg-1) in hypoxia (rs1769793, rs2064766, rs2437150, rs2491403, rs479200). For 4 of these SNPs, Quechua had the highest frequency of the advantageous (high VO2max) allele compared with 25 diverse lowland comparison populations from the 1000 Genomes Project. Genotype effects were substantial, with high versus low VO2max genotype categories differing by ∼11% (e.g., for rs1769793 SNP genotype TT = 34.2 mL⋅min-1⋅kg-1 vs. CC = 30.5 mL⋅min-1⋅kg-1). To guard against spurious association, we controlled for population stratification. Findings were replicated for EGLN1 SNP rs1769793 in an independent Andean sample collected in 2002. These findings contextualize previous reports of natural selection at EGLN1 in Andeans, and support the hypothesis that natural selection has increased the frequency of an EGLN1 causal variant that enhances O2 delivery or use during exercise at altitude in Peruvian Quechua.


Asunto(s)
Altitud , Prolina Dioxigenasas del Factor Inducible por Hipoxia/fisiología , Hipoxia/genética , Oxígeno/metabolismo , Polimorfismo de Nucleótido Simple , Aclimatación , Adaptación Fisiológica , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Pueblos Indígenas , Masculino , Perú , Selección Genética , Estrés Fisiológico
3.
Am J Phys Anthropol ; 170(3): 451-458, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31396964

RESUMEN

OBJECTIVES: Andean and Tibetan high-altitude natives exhibit a high concentration of nitric oxide (NO) in the lungs, suggesting that NO plays an adaptive role in offsetting hypobaric hypoxia. We examined the exhaled NO concentration as well as partial pressure of several additional high-altitude native populations in order to examine the possibility that this putative adaptive trait, that is, high exhaled NO, is universal. METHODS: We recruited two geographically diverse highland native populations, Tawang Monpa (TM), a Tibetan derived population in North-Eastern India (n = 95, sampled at an altitude of ~3,200 m), and Peruvian Quechua from the highland Andes (n = 412). The latter included three distinct subgroups defined as those residing at altitude (Q-HAR, n = 110, sampled at 4,338 m), those born and residing at sea-level (Q-BSL, n = 152), and those born at altitude but migrant to sea-level (Q-M, n = 150). In addition, we recruited a referent sample of lowland natives of European ancestry from Syracuse, New York. Fraction of exhaled NO concentrations were measured using a NIOX NIMO following the protocol of the manufacturer. RESULTS: Partial pressure of exhaled nitric oxide (PENO) was significantly lower (p < .05) in both high-altitude resident groups (TM = 6.2 ± 0.5 nmHg and Q-HAR = 5.8 ± 0.5 nmHg), as compared to the groups measured at sea level (USA = 14.6 ± 0.7 nmHg, Q-BSL = 18.9 ± 1.6 nmHg, and Q-M = 19.2 ± 1.7 nmHg). PENO was not significantly different between TM and Q-HAR (p < .05). CONCLUSION: In contrast to previous work, we found lower PENO in populations at altitude (compared to sea-level) and no difference in PENO between Tibetan and Andean highland native populations. These results do not support the hypothesis that high nitric oxide in human lungs is a universal adaptive mechanism of highland native populations to offset hypobaric hypoxia.


Asunto(s)
Espiración , Óxido Nítrico/metabolismo , Adaptación Fisiológica , Adulto , Altitud , Femenino , Humanos , India , Indígenas Sudamericanos , Masculino , Perú , Tibet/etnología , Adulto Joven
4.
Am J Phys Anthropol ; 156(3): 363-73, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25385548

RESUMEN

High altitude natives are reported to have outstanding work capacity in spite of the challenge of oxygen transport and delivery in hypoxia. To evaluate the developmental effect of lifelong exposure to hypoxia on aerobic capacity, VO2peak was measured on two groups of Peruvian Quechua subjects (18-35 years), who differed in their developmental exposure to altitude. Male and female volunteers were recruited in Lima, Peru (150 m), and were divided in two groups, based on their developmental exposure to hypoxia, those: a) Born at sea-level individuals (BSL), with no developmental exposure to hypoxia (n = 34) and b) Born at high-altitude individuals (BHA) with full developmental exposure to hypoxia (n = 32), but who migrated to sea-level as adults (>16-years-old). Tests were conducted both in normoxia (BP = 750 mm Hg) and normobaric hypoxia at sea-level (BP = 750 mm Hg, FiO2 = 0.12, equivalent to 4,449 m), after a 2-month training period (in order to control for initial differences in physical fitness) at sea-level. BHA had a significantly higher VO2peak at hypoxia (40.31 ± 1.0 ml/min/kg) as compared to BSL (35.78 ± 0.96 ml/min/kg, P = 0.001), adjusting for sex. The decrease of VO2peak at HA relative to SL (ΔVO2peak ) was not different between groups, controlling for baseline levels (VO2peak at sea-level) and sex (BHA = 0.35 ± 0.04 l/min, BSL = 0.44 ± 0.04 l/min; P = 0.12). Forced vital capacity (controlling for height) and the residuals of VO2peak (controlling for weight) had a significant association in the BHA group only (r = 0.155; P = 0.031). In sum, results indicate that developmental exposure to altitude constitutes an important factor to determine superior exercise performance.


Asunto(s)
Aclimatación/fisiología , Ejercicio Físico/fisiología , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo , Adolescente , Adulto , Antropología Física , Femenino , Hemoglobinas/análisis , Humanos , Hipoxia , Masculino , Oxígeno/sangre , Perú , Adulto Joven
5.
Am J Hum Biol ; 25(6): 844-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24105745

RESUMEN

OBJECTIVES: To determine if a small body size at birth is associated with an unfavorable metabolic profile and a reduced response to exercise training in young adults. METHODS: Thirty-six college students, all singletons born to term, participated. Subjects were defined as either high ponderal index (HIGHPI) or low ponderal index (LOWPI). LOWPI was defined as below the 10th percentile of the PI-for-gestational age distribution. HIGHPI was defined as greater than the 10th percentile. Subject groups were matched pair-wise on age, sex, BMI, and pretraining physical activity level. Subjects completed an 8-week aerobic exercise program. Pre- and post-training measurements included a blood lipid profile. RESULTS: The LOWPI group, when compared to the HIGHPI group, exhibited higher total (183.6 mg dl(-1) vs. 150.9, P = 0.04) and LDL cholesterol (114.8 mg dl(-1) vs. 80.2, P = 0.019) values prior to exercise training. After training, these values decreased in the LOWPI group, eliminating the group difference. Various blood lipid ratios were more favorable for the HIGHPI group, both before and after training. The inclusion of maternal smoking as a covariate attenuated group differences for pretraining TChol, pre-training TG:HDL, and post-training HDL cholesterol. CONCLUSIONS: An 8-week exercise program corrected some, but not all, of the differences in blood lipid values between the LOWPI and HIGHPI group. The persistent group difference in blood lipid ratios suggests a higher long-term risk of chronic disease in the LOWPI group independent of lifestyle intervention.


Asunto(s)
Peso al Nacer , Metabolismo Energético , Ejercicio Físico , Lípidos/sangre , Femenino , Humanos , Recién Nacido , Recién Nacido Pequeño para la Edad Gestacional , Masculino , Embarazo , Adulto Joven
6.
Am J Hum Biol ; 25(2): 190-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23348729

RESUMEN

OBJECTIVES: High-altitude hypoxia, or decreased oxygen levels caused by low barometric pressure, challenges the ability of humans to live and reproduce. Despite these challenges, human populations have lived on the Andean Altiplano and the Tibetan Plateau for millennia and exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. We and others have identified natural selection candidate genes and gene regions for these adaptations using dense genome scan data. One gene previously known to be important in cellular oxygen sensing, egl nine homolog 1 (EGLN1), shows evidence of positive selection in both Tibetans and Andeans. Interestingly, the pattern of variation for this gene differs between the two populations. Continued research among Tibetan populations has identified statistical associations between hemoglobin concentration and single nucleotide polymorphism (SNP) genotype at EGLN1 and a second gene, endothelial PAS domain protein 1 (EPAS1). METHODS: To measure for the effects of EGLN1 and EPAS1 altitude genotypes on hemoglobin concentration among Andean highlanders, we performed a multiple linear regression analysis of 10 candidate SNPs in or near these two genes. RESULTS: Our analysis did not identify significant associations between EPAS1 or EGLN1 SNP genotypes and hemoglobin concentration in Andeans. CONCLUSIONS: These results contribute to our understanding of the unique set of adaptations developed in different highland groups to the hypoxia of high altitude. Overall, the results provide key insights into the patterns of genetic adaptation to high altitude in Andean and Tibetan populations.


Asunto(s)
Aclimatación , Regulación de la Expresión Génica , Polimorfismo de Nucleótido Simple , Adaptación Fisiológica , Altitud , Pueblo Asiatico , Hemoglobinas/genética , Hemoglobinas/metabolismo , Humanos , Indígenas Sudamericanos , Selección Genética , América del Sur , Tibet
7.
Am J Phys Anthropol ; 148(4): 534-42, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22552823

RESUMEN

High altitude natives have enlarged vital capacities and residual volumes (RV). Because pulmonary volumes are an indication of functionally relevant traits, such as diffusion capacity, the understanding of the factors (genetic/developmental) that influence lung volumes provides insight into the adaptive responses of highlanders. In order to test for the effect of growth and development at high altitude on lung volumes, we obtained forced vital capacities (FVC), RV, and total lung capacities (TLC) for a sample of 65 Peruvian females of mostly Quechua origins (18-34 years) who were sub-divided into two well-matched groups: 1) sea-level born and raised females (BSL, n = 34) from Lima, Peru (150 m), and 2) high-altitude born and raised females (BHA, n = 31) from Cerro de Pasco, Peru (4,338 m). To determine Quechua origins, Native American ancestry proportion (NAAP) for each individual was assessed using a panel of 70 ancestry informative markers. NAAP was similar between groups (BSL = 91.71%; BHA = 89.93%; P = 0.240), and the analysis confirmed predominantly Quechua origins. After adjusting for body size and NAAP, BHA females had significantly higher FVC (3.79 ± 0.06 l; P < 0.001), RV (0.98 ± 0.03 l; P < 0.001) and TLC (4.80 ± 0.07 l; P < 0.001) compared to BSL females (FVC = 3.33 ± 0.05 l; RV = 0.69 ± 0.03 l; TLC = 4.02 ± 0.06 l). NAAP was not associated with FVC (P = 0.352) or TLC (P = 0.506). However, NAAP was positively associated with RV (P = 0.004). In summary, results indicate that developmental exposure to high altitude in females constitutes an important factor for all lung volumes, whereas both genetic and developmental factors seem to be important for RV.


Asunto(s)
Adaptación Biológica/fisiología , Indígenas Sudamericanos/genética , Capacidad Pulmonar Total/fisiología , Adaptación Biológica/genética , Adolescente , Adulto , Altitud , Análisis de Varianza , Antropología Física , Antropometría , Femenino , Marcadores Genéticos/genética , Humanos , Modelos Lineales , Perú , Polimorfismo de Nucleótido Simple , Pruebas de Función Respiratoria , Capacidad Pulmonar Total/genética
8.
Sci Rep ; 12(1): 11148, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778402

RESUMEN

Despite aerobic activity requiring up to tenfold increases in air intake, human populations in high-altitude hypoxic environments can sustain high levels of endurance physical activity. While these populations generally have relatively larger chest and lung volumes, how thoracic motions actively increase ventilation is unknown. Here we show that rib movements, in conjunction with chest shape, contribute to ventilation by assessing how adulthood acclimatization, developmental adaptation, and population-level adaptation to high-altitude affect sustained aerobic activity. We measured tidal volume, heart rate, and rib-motion during walking and running in lowland individuals from Boston (~ 35 m) and in Quechua populations born and living at sea-level (~ 150 m) and at high altitude (> 4000 m) in Peru. We found that Quechua participants, regardless of birth or testing altitudes, increase thoracic volume 2.0-2.2 times more than lowland participants (p < 0.05). Further, Quechua individuals from hypoxic environments have deeper chests resulting in 1.3 times greater increases in thoracic ventilation compared to age-matched, sea-level Quechua (p < 0.05). Thus, increased thoracic ventilation derives from a combination of acclimatization, developmental adaptation, and population-level adaptation to aerobic demand in different oxygen environments, demonstrating that ventilatory demand due to environment and activity has helped shape the form and function of the human thorax.


Asunto(s)
Aclimatación , Altitud , Aclimatación/fisiología , Adaptación Fisiológica/fisiología , Adulto , Ejercicio Físico/fisiología , Humanos , Hipoxia , Respiración
9.
Genome Biol Evol ; 13(2)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33185669

RESUMEN

High-altitude adaptation is a classic example of natural selection operating on the human genome. Physiological and genetic adaptations have been documented in populations with a history of living at high altitude. However, the role of epigenetic gene regulation, including DNA methylation, in high-altitude adaptation is not well understood. We performed an epigenome-wide DNA methylation association study based on whole blood from 113 Peruvian Quechua with differential lifetime exposures to high altitude (>2,500) and recruited based on a migrant study design. We identified two significant differentially methylated positions (DMPs) and 62 differentially methylated regions (DMRs) associated with high-altitude developmental and lifelong exposure statuses. DMPs and DMRs were found in genes associated with hypoxia-inducible factor pathway, red blood cell production, blood pressure, and others. DMPs and DMRs associated with fractional exhaled nitric oxide also were identified. We found a significant association between EPAS1 methylation and EPAS1 SNP genotypes, suggesting that local genetic variation influences patterns of methylation. Our findings demonstrate that DNA methylation is associated with early developmental and lifelong high-altitude exposures among Peruvian Quechua as well as altitude-adaptive phenotypes. Together these findings suggest that epigenetic mechanisms might be involved in adaptive developmental plasticity to high altitude. Moreover, we show that local genetic variation is associated with DNA methylation levels, suggesting that methylation associated SNPs could be a potential avenue for research on genetic adaptation to hypoxia in Andeans.


Asunto(s)
Altitud , Epigénesis Genética , Adulto , Metilación de ADN , Femenino , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Perú , Fenotipo , Polimorfismo de Nucleótido Simple , Adulto Joven
10.
Environ Int ; 155: 106587, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33940396

RESUMEN

BACKGROUND: Inorganic lead (Pb) is common in the environment, and is toxic to neurological, renal, and cardiovascular systems. Pb exposure influences the epigenome with documented effects on DNA methylation (DNAm). We assessed the impact of low levels of Pb exposure on DNAm among non-miner individuals from two locations in Peru: Lima, the capital, and Cerro de Pasco, a highland mining town, to study the effects of Pb exposure on physiological outcomes and DNAm. METHODS: Pb levels were measured in whole blood (n = 305). Blood leukocyte DNAm was determined for 90 DNA samples using the Illumina MethylationEPIC chip. An epigenome-wide association study was performed to assess the relationship between Pb and DNAm. RESULTS: Individuals from Cerro de Pasco had higher Pb than individuals from Lima (p-value = 2.00E-16). Males had higher Pb than females (p-value = 2.36E-04). Pb was positively associated with hemoglobin (p-value = 8.60E-04). In Cerro de Pasco, blood Pb decreased with the distance from the mine (p-value = 0.04), and association with soil Pb was approaching significance (p-value = 0.08). We identified differentially methylated positions (DMPs) associated with genes SOX18, ZMIZ1, and KDM1A linked to neurological function. We also found 45 differentially methylated regions (DMRs), seven of which were associated with genes involved in metal ion binding and nine to neurological function and development. CONCLUSIONS: Our results demonstrate that even low levels of Pb can have a significant impact on the body including changes to DNAm. We report associations between Pb and hemoglobin, Pb and distance from mining, and between blood and soil Pb. We also report associations between loci- and region-specific DNAm and Pb.


Asunto(s)
Metilación de ADN , Plomo , Adulto , Epigénesis Genética , Epigenoma , Femenino , Hispánicos o Latinos , Histona Demetilasas , Humanos , Plomo/toxicidad , Masculino , Perú , Factores de Transcripción SOXF
11.
Epigenetics ; 14(1): 1-15, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30574831

RESUMEN

Recent discoveries indicate a genetic basis for high-altitude adaptation among human groups who have resided at high altitude for millennia, including Andeans, Tibetans, and Ethiopians. Yet, genetics alone does not explain the extent of variation in altitude-adaptive phenotypes. Current and past environments may also play a role, and one way to determine the effect of the environment is through the epigenome. To characterize if Andean adaptive responses to high altitude have an epigenetic component, we analyzed DNA methylation of the promoter region of EPAS1 and LINE-1 repetitive element among 572 Quechua individuals from high- (4,388 m) and low-altitude (0 m) in Peru. Participants recruited at high altitude had lower EPAS1 DNA methylation and higher LINE-1 methylation. Altitude of birth was associated with higher LINE-1 methylation, not with EPAS1 methylation. The number of years lived at high altitude was negatively associated with EPAS1 methylation and positively associated with LINE-1 methylation. We found four one-carbon metabolism SNPs (MTHFD1 rs2236225, TYMS rs502396, FOLH1 rs202676, GLDC rs10975681) that cumulatively explained 11.29% of the variation in average LINE-1 methylation. And identified an association between LINE-1 methylation and genome-wide SNP principal component 1 that distinguishes European from Indigenous American ancestry suggesting that European admixture decreases LINE-1 methylation. Our results indicate that both current and lifetime exposure to high-altitude hypoxia have an effect on EPAS1 and LINE-1 methylation among Andean Quechua, suggesting that epigenetic modifications may play a role in high-altitude adaptation.


Asunto(s)
Mal de Altura/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Metilación de ADN , Elementos de Nucleótido Esparcido Largo/genética , Adaptación Fisiológica/genética , Adolescente , Adulto , Altitud , Mal de Altura/etnología , Epigénesis Genética , Femenino , Humanos , Masculino , Polimorfismo de Nucleótido Simple
12.
High Alt Med Biol ; 9(2): 167-78, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18578648

RESUMEN

The I-allele of the angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism has been associated with performance benefits at high altitude (HA). In n = 142 young males and females of largely Quechua origins in Peru, we evaluated 3 specific hypotheses with regard to the HA benefits of the I-allele: (1) the I-allele is associated with higher arterial oxygen saturation (Sa(O(2))) at HA, (2) the I-allele effect depends on the acclimatization state of the subjects, and (3) the putative I-allele effect on Sa(O(2)) is mediated by the isocapnic hypoxic ventilatory response (HVR, l/min(1)/% Sa(O(2))(1)). The subject participants comprised two different study groups including BLA subjects (born at low altitude) who were lifelong sea-level residents transiently exposed to hypobaric hypoxia (<24 h) and BHA subjects (born at HA) who were lifelong residents of HA. To control for the possibility of population stratification, Native American ancestry proportion (NAAP) was estimated as a covariate for each individual using a panel of 70 ancestry-informative molecular markers (AIMS). At HA, resting and exercise Sa(O(2)) was strongly associated with the ACE genotype, p = 0.008 with approximately 4% of the total variance in Sa(O(2)) attributed to ACE genotype. Moreover, I/I individuals maintained approximately 2.3 percentage point higher Sa(O(2)) compared to I/D and D/D. This I-allele effect was evident in both BLA and BHA groups, suggesting that acclimatization state has little influence on the phenotypic expression of the ACE gene. Finally, ACE genotype was not associated with the isocapnic HVR, although HVR had a strong independent effect on Sa(O(2)) (p = 0.001). This suggests that the I-allele effect on Sa(O(2)) is not mediated by the peripheral control of breathing, but rather by some other central cardiopulmonary effect of the ACE gene on the renin-angiotensin-aldosterone system (RAAS).


Asunto(s)
Aclimatación/genética , Indígenas Sudamericanos/genética , Consumo de Oxígeno/fisiología , Peptidil-Dipeptidasa A/genética , Polimorfismo Genético , Adulto , Alelos , Femenino , Eliminación de Gen , Humanos , Masculino , Perú , Arteria Pulmonar , Valores de Referencia
13.
High Alt Med Biol ; 16(2): 138-46, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25977978

RESUMEN

Kiyamu, Melisa, Fabiola León-Velarde, María Rivera-Chira, Gianpietro Elías, and Tom D. Brutsaert. Developmental effects determine submaximal arterial oxygen saturation in Peruvian Quechua. High Alt Med Biol 16, 138-146, 2015.--Andean high altitude natives show higher arterial oxygen saturation (Sao(2)) during exercise in hypoxia, compared to acclimatized sojourners. In order to evaluate the effects of life-long exposure to high altitude on Sao(2), we studied two groups of well-matched, self-identified Peruvian Quechua natives who differed in their developmental exposure to hypoxia before and after a 2-month training period. Male and female volunteers (18-35 years) were recruited in Lima, Peru (150 m). The two groups were: a) Individuals who were born and raised at sea-level (BSL, n=34) and b) Individuals who were born and raised at high altitude (BHA, n=32), but who migrated to sea-level as adults (>16 years old). Exercise testing was conducted using a submaximal exercise protocol in normobaric hypoxia in Lima (BP=750 mmHg, Fio(2)=0.12), in order to measure Sao(2) (%), ventilation (VE L/min) and oxygen consumption (Vo(2), L/min). Repeated-measures ANOVA, controlling for VE/VO(2) (L/min) and sex during the submaximal protocol showed that BHA maintained higher Sao(2) (%) compared to BSL at all workloads before (p=0.005) and after training (p=0.017). As expected, both groups showed a decrease in Sao(2) (%) (p<0.001), as workload increased. Resting Sao(2) levels were not found to be different between groups. The results suggest that developmental exposure to altitude contributes to the maintenance of higher Sao(2) levels during submaximal exercise at hypoxia.


Asunto(s)
Mal de Altura/metabolismo , Altitud , Indígenas Sudamericanos , Consumo de Oxígeno/fisiología , Intercambio Gaseoso Pulmonar/fisiología , Aclimatación/fisiología , Adolescente , Adulto , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Perú/etnología , Adulto Joven
14.
Early Hum Dev ; 87(10): 663-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21641734

RESUMEN

Poor fetal growth is associated with decrements in muscle strength likely due to changes during myogenesis. We investigated the association of poor fetal growth with muscle strength, fatigue resistance, and the response to training in the isolated quadriceps femoris. Females (20.6 years) born to term but below the 10th percentile of ponderal index (PI)-for-gestational-age (LOWPI, n=14) were compared to controls (HIGHPI, n=14), before and after an 8-week training. Muscle strength was assessed as grip-strength and as the maximal isometric voluntary contraction (MVC) of the quadriceps femoris. Muscle fatigue was assessed during knee extension exercise. Body composition and the maximal oxygen consumption (VO(2)max) were also measured. Controlling for fat free mass (FFM), LOWPI versus HIGHPI women had ~11% lower grip-strength (P=0.023), 9-24% lower MVC values (P=0.042 pre-trained; P=0.020 post-trained), a higher rate of fatigue (pre- and post-training), and a diminished training response (P=0.016). Statistical control for FFM increased rather than decreased strength differences between PI groups. The PI was not associated with VO(2)max or measures of body composition. Strength and fatigue decrements strongly suggest that poor fetal growth affects the pathway of muscle force generation. This could be due to neuromotor and/or muscle morphologic changes during development e.g., fiber number, fiber type, etc. Muscle from LOWPI women may also be less responsive to training. Indirectly, results also implicate muscle as a potential mediator between poor fetal growth and adult chronic disease, given muscle's direct role in determining insulin resistance, type II diabetes, physical activity, and so forth.


Asunto(s)
Peso al Nacer , Fatiga Muscular , Fuerza Muscular/fisiología , Composición Corporal , Femenino , Edad Gestacional , Humanos , Recién Nacido , Recién Nacido Pequeño para la Edad Gestacional , Debilidad Muscular , Educación y Entrenamiento Físico , Embarazo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA