Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Epilepsia ; 64(12): 3113-3129, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37703096

RESUMEN

Drug discovery in epilepsy began with the finding of potassium bromide by Sir Charles Locock in 1857. The following century witnessed the introduction of phenotypic screening tests for discovering antiseizure medications (ASMs). Despite the high success rate of developing ASMs, they have so far failed in eliminating drug resistance and in delivering disease-modifying treatments. This emphasizes the need for new drug discovery strategies in epilepsy. RNA-based drugs have recently shown promise as a new modality with the potential of providing disease modification and counteracting drug resistance in epilepsy. RNA therapeutics can be directed either toward noncoding RNAs, such as microRNAs, long noncoding RNAs (ncRNAs), and circular RNAs, or toward messenger RNAs. The former show promise in sporadic, nongenetic epilepsies, as interference with ncRNAs allows for modulation of entire disease pathways, whereas the latter seem more promising in monogenic childhood epilepsies. Here, we describe therapeutic strategies for modulating disease-associated RNA molecules and highlight the potential of RNA therapeutics for the treatment of different patient populations such as sporadic, drug-resistant epilepsy, and childhood monogenic epilepsies.


Asunto(s)
Epilepsia Refractaria , Epilepsia , MicroARNs , Humanos , Niño , Epilepsia/tratamiento farmacológico , Epilepsia/genética , MicroARNs/genética , Epilepsia Refractaria/tratamiento farmacológico , Epilepsia Refractaria/genética , Descubrimiento de Drogas , Resistencia a Medicamentos
2.
RNA Biol ; 19(1): 594-608, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35482908

RESUMEN

RNA therapeutics comprise a diverse group of oligonucleotide-based drugs such as antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), and short hairpin RNAs (shRNAs) that can be designed to selectively interact with drug targets currently undruggable with small molecule-based drugs or monoclonal antibodies. Furthermore, RNA-based therapeutics have the potential to modulate entire disease pathways, and thereby represent a new modality with unprecedented potential for generating disease-modifying drugs for a wide variety of human diseases, including central nervous system (CNS) disorders. Here, we describe different strategies for delivering RNA drugs to the CNS and review recent advances in clinical development of ASO drugs and siRNA-based therapeutics for the treatment of neurological diseases and neuromuscular disorders.Abbreviations 2'-MOE: 2'-O-(2-methoxyethyl); 2'-O-Me: 2'-O-methyl; 2'-F: 2'-fluoro; AD: Alzheimer's disease; ALS: Amyotrophic lateral sclerosis; ALSFRS-R: Revised Amyotrophic Lateral Sclerosis Functional Rating Scale; ARC: Antibody siRNA Conjugate; AS: Angelman Syndrome; ASGRP: Asialoglycoprotein receptor; ASO: Antisense oligonucleotide; AxD: Alexander Disease; BBB: Blood brain barrier; Bp: Basepair; CNM: Centronuclear myopathies; CNS: Central Nervous System; CPP: Cell-penetrating Peptide; CSF: Cerebrospinal fluid; DMD: Duchenne muscular dystrophy; DNA: Deoxyribonucleic acid; FAP: Familial amyloid polyneuropathy; FALS: Familial amyotrophic lateral sclerosis; FDA: The United States Food and Drug Administration; GalNAc: N-acetylgalactosamine; GoF: Gain of function; hATTR: Hereditary transthyretin amyloidosis; HD: Huntington's disease; HRQOL: health-related quality of life; ICV: Intracerebroventricular; IT: Intrathecal; LNA: Locked nucleic acid; LoF: Loss of function; mRNA: Messenger RNA; MS: Multiple Sclerosis; MSA: Multiple System Atrophy; NBE: New Biological Entity; NCE: New Chemical Entity; NHP: Nonhuman primate; nt: Nucleotide; PD: Parkinson's disease; PNP: Polyneuropathy; PNS: Peripheral nervous system; PS: Phosphorothioate; RISC: RNA-Induced Silencing Complex; RNA: Ribonucleic acid; RNAi: RNA interference; s.c.: Subcutaneous; siRNA: Small interfering RNA; SMA: Spinal muscular atrophy; SMN: Survival motor neuron; TTR: Transthyretin.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neuromusculares , Neuropatías Amiloides Familiares , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Animales , Enfermedades Neuromusculares/tratamiento farmacológico , Enfermedades Neuromusculares/terapia , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Calidad de Vida , ARN Mensajero , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Estados Unidos
3.
Epilepsy Behav ; 118: 107939, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33839453

RESUMEN

PURPOSE: To understand the currently available post-marketing real-world evidence of the incidences of and discontinuations due to the BAEs of irritability, anger, and aggression in people with epilepsy (PWE) treated with the anti-seizure medications (ASMs) brivaracetam (BRV), levetiracetam (LEV), perampanel (PER), and topiramate (TPM), as well as behavioral adverse events (BAEs) in PWE switching from LEV to BRV. METHODS: A systematic review of published literature using the Cochrane Library, PubMed/MEDLINE, and Embase was performed to identify retrospective and prospective observational studies reporting the incidence of irritability, anger, or aggression with BRV, LEV, PER, or TPM in PWE. The incidences of these BAEs and the rates of discontinuation due to each were categorized by ASM, and where possible, weighted means were calculated but not statistically assessed. Behavioral and psychiatric adverse events in PWE switching from LEV to BRV were summarized descriptively. RESULTS: A total of 1500 records were identified in the searches. Of these, 44 published articles reporting 42 studies met the study criteria and were included in the data synthesis, 7 studies were identified in the clinical trial database, and 5 studies included PWE switching from LEV to BRV. Studies included a variety of methods, study populations, and definitions of BAEs. While a wide range of results was reported across studies, weighted mean incidences were 5.6% for BRV, 9.9% for LEV, 12.3% for PER, and 3.1% for TPM for irritability; 3.3%* for BRV, 2.5% for LEV, 2.0% for PER, and 0.2%* for TPM for anger; and 2.5% for BRV, 2.6% for LEV, 4.4% for PER, and 0.5%* for TPM for aggression. Weighted mean discontinuation rates were 0.8%* for BRV, 3.4% for LEV, 3.0% for PER, and 2.2% for TPM for irritability and 0.8%* for BRV, 2.4% for LEV, 9.2% for PER, and 1.2%* for TPM for aggression. There were no discontinuations for anger. Switching from LEV to BRV led to improvement in BAEs in 33.3% to 83.0% of patients (weighted mean, 66.6%). *Denotes only 1 study. CONCLUSIONS: This systematic review characterizes the incidences of irritability, anger, and aggression with BRV, LEV, PER, and TPM, and it provides robust real-world evidence demonstrating that switching from LEV to BRV may improve BAEs. While additional data remain valuable due to differences in methodology (which make comparisons difficult), these results improve understanding of the real-world incidences of discontinuations due to these BAEs in clinical practice and can aid in discussions and treatment decision-making with PWE.


Asunto(s)
Anticonvulsivantes , Pirrolidinonas , Anticonvulsivantes/efectos adversos , Humanos , Levetiracetam/uso terapéutico , Nitrilos , Estudios Observacionales como Asunto , Piridonas , Estudios Retrospectivos , Topiramato/uso terapéutico , Resultado del Tratamiento
4.
J Pharmacol Exp Ther ; 372(1): 11-20, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31619464

RESUMEN

The antiepileptic drug (AED) candidate, (4R)-4-(2-chloro-2,2-difluoroethyl)-1-{[2-(methoxymethyl)-6-(trifluoromethyl)imidazo[2,1-b][1,3,4]thiadiazol-5-yl]methyl}pyrrolidin-2-one (padsevonil), is the first in a novel class of drugs that bind to synaptic vesicle protein 2 (SV2) proteins and the GABAA receptor benzodiazepine site, allowing for pre- and postsynaptic activity, respectively. In acute seizure models, padsevonil provided potent, dose-dependent protection against seizures induced by administration of pilocarpine or 11-deoxycortisol, and those induced acoustically or through 6 Hz stimulation; it was less potent in the pentylenetetrazol, bicuculline, and maximal electroshock models. Padsevonil displayed dose-dependent protective effects in chronic epilepsy models, including the intrahippocampal kainate and Genetic Absence Epilepsy Rats from Strasbourg models, which represent human mesial temporal lobe and absence epilepsy, respectively. In the amygdala kindling model, which is predictive of efficacy against focal to bilateral tonic-clonic seizures, padsevonil provided significant protection in kindled rodents; in mice specifically, it was the most potent AED compared with nine others with different mechanisms of action. Its therapeutic index was also the highest, potentially translating into a favorable efficacy and tolerability profile in humans. Importantly, in contrast to diazepam, tolerance to padsevonil's antiseizure effects was not observed in the pentylenetetrazol-induced clonic seizure threshold test. Further results in the 6 Hz model showed that padsevonil provided significantly greater protection than the combination of diazepam with either 2S-(2-oxo-1-pyrrolidinyl)butanamide (levetiracetam) or 2S-2-[(4R)-2-oxo-4-propylpyrrolidin-1-yl] butanamide (brivaracetam), both selective SV2A ligands. This observation suggests that padsevonil's unique mechanism of action confers antiseizure properties beyond the combination of compounds targeting SV2A and the benzodiazepine site. Overall, padsevonil displayed robust efficacy across validated seizure and epilepsy models, including those considered to represent drug-resistant epilepsy. SIGNIFICANCE STATEMENT: Padsevonil, a first-in-class antiepileptic drug candidate, targets SV2 proteins and the benzodiazepine site of GABAA receptors. It demonstrated robust efficacy across a broad range of rodent seizure and epilepsy models, several representing drug-resistant epilepsy. Furthermore, in one rodent model, its efficacy extended beyond the combination of drugs interacting separately with SV2 or the benzodiazepine site. Padsevonil displayed a high therapeutic index, potentially translating into a favorable safety profile in humans; tolerance to antiseizure effects was not observed.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Imidazoles/uso terapéutico , Pirrolidinonas/uso terapéutico , Convulsiones/tratamiento farmacológico , Tiadiazoles/uso terapéutico , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/fisiopatología , Animales , Anticonvulsivantes/efectos adversos , Anticonvulsivantes/farmacología , Evaluación Preclínica de Medicamentos , Femenino , Imidazoles/efectos adversos , Imidazoles/farmacología , Excitación Neurológica , Masculino , Dosis Máxima Tolerada , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Pirrolidinonas/efectos adversos , Pirrolidinonas/farmacología , Ratas , Ratas Sprague-Dawley , Tiadiazoles/efectos adversos , Tiadiazoles/farmacología
5.
Epilepsia ; 61(3): 359-386, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32196665

RESUMEN

Prevention of epilepsy is a great unmet need. Acute central nervous system (CNS) insults such as traumatic brain injury (TBI), cerebrovascular accidents (CVA), and CNS infections account for 15%-20% of all epilepsy. Following TBI and CVA, there is a latency of days to years before epilepsy develops. This allows treatment to prevent or modify postinjury epilepsy. No such treatment exists. In animal models of acquired epilepsy, a number of medications in clinical use for diverse indications have been shown to have antiepileptogenic or disease-modifying effects, including medications with excellent side effect profiles. These include atorvastatin, ceftriaxone, losartan, isoflurane, N-acetylcysteine, and the antiseizure medications levetiracetam, brivaracetam, topiramate, gabapentin, pregabalin, vigabatrin, and eslicarbazepine acetate. In addition, there are preclinical antiepileptogenic data for anakinra, rapamycin, fingolimod, and erythropoietin, although these medications have potential for more serious side effects. However, except for vigabatrin, there have been almost no translation studies to prevent or modify epilepsy using these potentially "repurposable" medications. We may be missing an opportunity to develop preventive treatment for epilepsy by not evaluating these medications clinically. One reason for the lack of translation studies is that the preclinical data for most of these medications are disparate in terms of types of injury, models within different injury type, dosing, injury-treatment initiation latencies, treatment duration, and epilepsy outcome evaluation mode and duration. This makes it difficult to compare the relative strength of antiepileptogenic evidence across the molecules, and difficult to determine which drug(s) would be the best to evaluate clinically. Furthermore, most preclinical antiepileptogenic studies lack information needed for translation, such as dose-blood level relationship, brain target engagement, and dose-response, and many use treatment parameters that cannot be applied clinically, for example, treatment initiation before or at the time of injury and dosing higher than tolerated human equivalent dosing. Here, we review animal and human antiepileptogenic evidence for these medications. We highlight the gaps in our knowledge for each molecule that need to be filled in order to consider clinical translation, and we suggest a platform of preclinical antiepileptogenesis evaluation of potentially repurposable molecules or their combinations going forward.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Antioxidantes/uso terapéutico , Epilepsia Postraumática/prevención & control , Epilepsia/prevención & control , GABAérgicos/uso terapéutico , Factores Inmunológicos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Acetilcisteína/uso terapéutico , Animales , Atorvastatina/uso terapéutico , Lesiones Traumáticas del Encéfalo/complicaciones , Ceftriaxona/uso terapéutico , Dibenzazepinas/uso terapéutico , Reposicionamiento de Medicamentos , Epilepsia/etiología , Eritropoyetina/uso terapéutico , Clorhidrato de Fingolimod/uso terapéutico , Gabapentina/uso terapéutico , Humanos , Inflamación , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Isoflurano/uso terapéutico , Levetiracetam/uso terapéutico , Losartán/uso terapéutico , Estrés Oxidativo , Pregabalina/uso terapéutico , Pirrolidinonas/uso terapéutico , Sirolimus/uso terapéutico , Accidente Cerebrovascular/complicaciones , Topiramato/uso terapéutico , Investigación Biomédica Traslacional , Vigabatrin/uso terapéutico
6.
Epilepsia ; 60(5): 958-967, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30924924

RESUMEN

OBJECTIVE: Brivaracetam (BRV) and levetiracetam (LEV) are antiepileptic drugs that bind synaptic vesicle glycoprotein 2A (SV2A). In vitro and in vivo animal studies suggest faster brain penetration and SV2A occupancy (SO) after dosing with BRV than LEV. We evaluated human brain penetration and SO time course of BRV and LEV at therapeutically relevant doses using the SV2A positron emission tomography (PET) tracer 11 C-UCB-J (EP0074; NCT02602860). METHODS: Healthy volunteers were recruited into three cohorts. Cohort 1 (n = 4) was examined with PET at baseline and during displacement after intravenous BRV (100 mg) or LEV (1500 mg). Cohort 2 (n = 5) was studied during displacement and 4 hours postdose (BRV 50-200 mg or LEV 1500 mg). Cohort 3 (n = 4) was examined at baseline and steady state after 4 days of twice-daily oral dosing of BRV (50-100 mg) and 4 hours postdose of LEV (250-600 mg). Half-time of 11 C-UCB-J signal change was computed from displacement measurements. Half-saturation concentrations (IC50 ) were determined from calculated SO. RESULTS: Observed tracer displacement half-times were 18 ± 6 minutes for BRV (100 mg, n = 4), 9.7 and 10.1 minutes for BRV (200 mg, n = 2), and 28 ± 6 minutes for LEV (1500 mg, n = 6). Estimated corrected half-times were 8 minutes shorter. The SO was 66%-70% for 100 mg intravenous BRV, 84%-85% for 200 mg intravenous BRV, and 78%-84% for intravenous 1500 mg LEV. The IC50 of BRV (0.46 µg/mL) was 8.7-fold lower than of LEV (4.02 µg/mL). BRV data fitted a single SO versus plasma concentration relationship. Steady state SO for 100 mg BRV was 86%-87% (peak) and 76%-82% (trough). SIGNIFICANCE: BRV achieves high SO more rapidly than LEV when intravenously administered at therapeutic doses. Thus, BRV may have utility in treating acute seizures; further clinical studies are needed for confirmation.


Asunto(s)
Anticonvulsivantes/farmacocinética , Levetiracetam/farmacocinética , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroimagen/métodos , Tomografía de Emisión de Positrones , Pirrolidinonas/farmacocinética , Administración Oral , Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/sangre , Anticonvulsivantes/metabolismo , Radioisótopos de Carbono , Femenino , Voluntarios Sanos , Humanos , Concentración 50 Inhibidora , Inyecciones Intravenosas , Levetiracetam/administración & dosificación , Levetiracetam/sangre , Levetiracetam/metabolismo , Imagen por Resonancia Magnética , Masculino , Unión Proteica , Pirrolidinonas/administración & dosificación , Pirrolidinonas/sangre , Pirrolidinonas/metabolismo
7.
Epilepsia ; 59(1): 37-66, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29247482

RESUMEN

The most common forms of acquired epilepsies arise following acute brain insults such as traumatic brain injury, stroke, or central nervous system infections. Treatment is effective for only 60%-70% of patients and remains symptomatic despite decades of effort to develop epilepsy prevention therapies. Recent preclinical efforts are focused on likely primary drivers of epileptogenesis, namely inflammation, neuron loss, plasticity, and circuit reorganization. This review suggests a path to identify neuronal and molecular targets for clinical testing of specific hypotheses about epileptogenesis and its prevention or modification. Acquired human epilepsies with different etiologies share some features with animal models. We identify these commonalities and discuss their relevance to the development of successful epilepsy prevention or disease modification strategies. Risk factors for developing epilepsy that appear common to multiple acute injury etiologies include intracranial bleeding, disruption of the blood-brain barrier, more severe injury, and early seizures within 1 week of injury. In diverse human epilepsies and animal models, seizures appear to propagate within a limbic or thalamocortical/corticocortical network. Common histopathologic features of epilepsy of diverse and mostly focal origin are microglial activation and astrogliosis, heterotopic neurons in the white matter, loss of neurons, and the presence of inflammatory cellular infiltrates. Astrocytes exhibit smaller K+ conductances and lose gap junction coupling in many animal models as well as in sclerotic hippocampi from temporal lobe epilepsy patients. There is increasing evidence that epilepsy can be prevented or aborted in preclinical animal models of acquired epilepsy by interfering with processes that appear common to multiple acute injury etiologies, for example, in post-status epilepticus models of focal epilepsy by transient treatment with a trkB/PLCγ1 inhibitor, isoflurane, or HMGB1 antibodies and by topical administration of adenosine, in the cortical fluid percussion injury model by focal cooling, and in the albumin posttraumatic epilepsy model by losartan. Preclinical studies further highlight the roles of mTOR1 pathways, JAK-STAT3, IL-1R/TLR4 signaling, and other inflammatory pathways in the genesis or modulation of epilepsy after brain injury. The wealth of commonalities, diversity of molecular targets identified preclinically, and likely multidimensional nature of epileptogenesis argue for a combinatorial strategy in prevention therapy. Going forward, the identification of impending epilepsy biomarkers to allow better patient selection, together with better alignment with multisite preclinical trials in animal models, should guide the clinical testing of new hypotheses for epileptogenesis and its prevention.


Asunto(s)
Lesiones Encefálicas/complicaciones , Modelos Animales de Enfermedad , Epilepsia/etiología , Investigación Biomédica Traslacional , Animales , Lesiones Encefálicas/clasificación , Humanos
8.
Epilepsia ; 58(11): e157-e161, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28850675

RESUMEN

Brivaracetam (BRV) is a selective, high-affinity ligand for synaptic vesicle protein 2A (SV2A), recently approved as adjunctive treatment for drug-refractory partial-onset seizures in adults. BRV binds SV2A with higher affinity than levetiracetam (LEV), and was shown to have a differential interaction with SV2A. Because LEV was reported to interact with multiple excitatory and inhibitory ligand-gated ion channels and that may impact its pharmacological profile, we were interested in determining whether BRV directly modulates inhibitory and excitatory ionotropic receptors in central neurons. Voltage-clamp experiments were performed in primary cultures of mouse hippocampal neurons. At a supratherapeutic concentration of 100 µm, BRV was devoid of any direct effect on currents gated by γ-aminobutyric acidergic type A, glycine, kainate, N-methyl-d-aspartate, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid. Similarly to LEV, BRV reveals a potent ability to oppose the action of negative modulators on the inhibitory receptors. In conclusion, these results show that BRV contrasts with LEV by not displaying any direct action on inhibitory or excitatory postsynaptic ligand-gated receptors at therapeutic concentrations and thereby support BRV's role as a selective SV2A ligand. These findings add further evidence to the validity of SV2A as a relevant antiepileptic drug target and emphasize the potential for exploring further presynaptic mechanisms as a novel approach to antiepileptic drug discovery.


Asunto(s)
Ácido Glutámico/farmacología , Glicina/farmacología , Hipocampo/fisiología , Glicoproteínas de Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Pirrolidinonas/farmacología , Ácido gamma-Aminobutírico/farmacología , Animales , Anticonvulsivantes/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Glicoproteínas de Membrana/agonistas , Ratones , Proteínas del Tejido Nervioso/agonistas , Neuronas/efectos de los fármacos , Neuronas/fisiología
9.
Epilepsia ; 58(7): 1199-1207, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28597912

RESUMEN

OBJECTIVE: To evaluate acute and long-term effects of intravenous brivaracetam (BRV) and BRV + diazepam (DZP) combination treatment in a rat model of self-sustaining status epilepticus (SSSE). METHODS: Rats were treated with BRV (10 mg/kg) 10 min after initiation of perforant path stimulation (PPS) as early treatment; or BRV (10-300 mg/kg), DZP (1 mg/kg), or BRV (0.3-10 mg/kg) + DZP (1 mg/kg) 10 min after the end of PPS (established SSSE). Seizure activity was recorded electrographically for 24 h posttreatment (acute effects), and for 1 week at 6-8 weeks or 12 months' posttreatment (long-term effects). All treatments were compared with control rats using one-way analysis of variance (ANOVA) and Bonferroni's test, or Kruskal--Wallis and Dunn's multiple comparison tests, when appropriate. RESULTS: Treatment of established SSSE with BRV (10-300 mg/kg) resulted in dose-dependent reduction in SSSE duration and cumulative seizure time, achieving statistical significance at doses ≥100 mg/kg. Lower doses of BRV (0.3-10 mg/kg) + low-dose DZP (1 mg/kg) significantly reduced SSSE duration and number of seizures. All control rats developed spontaneous recurrent seizures (SRS) 6-8 weeks after SSSE, whereas seizure freedom was noted in 2/10, 5/10, and 6/10 rats treated with BRV 200 mg/kg, 300 mg/kg, and BRV 10 mg/kg + DZP, respectively. BRV (10-300 mg/kg) showed a dose-dependent trend toward reduction of SRS frequency, cumulative seizure time, and spike frequency, achieving statistical significance at 300 mg/kg. Combination of BRV (10 mg/kg) + DZP significantly reduced SRS frequency, cumulative seizure time, and spike frequency. In the 12-month follow-up study, BRV (0.3-10 mg/kg) + low-dose DZP markedly reduced SRS frequency, cumulative seizure time, and spike frequency, achieving statistical significance at some doses. Early treatment of SSSE with BRV 10 mg/kg significantly reduced long-term SRS frequency. SIGNIFICANCE: These findings support clinical evaluation of BRV for treatment of status epilepticus or acute repetitive seizures.


Asunto(s)
Anticonvulsivantes/farmacología , Diazepam/farmacología , Modelos Animales de Enfermedad , Electroencefalografía/efectos de los fármacos , Pirrolidinonas/farmacología , Procesamiento de Señales Asistido por Computador , Estado Epiléptico/tratamiento farmacológico , Animales , Giro Dentado/efectos de los fármacos , Giro Dentado/fisiopatología , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Electrodos Implantados , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Infusiones Intravenosas , Cuidados a Largo Plazo , Masculino , Vía Perforante/efectos de los fármacos , Vía Perforante/fisiopatología , Ratas , Ratas Wistar , Estado Epiléptico/fisiopatología
10.
Epilepsia ; 57(4): 538-48, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26920914

RESUMEN

Despite availability of effective antiepileptic drugs (AEDs), many patients with epilepsy continue to experience refractory seizures and adverse events. Achievement of better seizure control and fewer side effects is key to improving quality of life. This review describes the rationale for the discovery and preclinical profile of brivaracetam (BRV), currently under regulatory review as adjunctive therapy for adults with partial-onset seizures. The discovery of BRV was triggered by the novel mechanism of action and atypical properties of levetiracetam (LEV) in preclinical seizure and epilepsy models. LEV is associated with several mechanisms that may contribute to its antiepileptic properties and adverse effect profile. Early findings observed a moderate affinity for a unique brain-specific LEV binding site (LBS) that correlated with anticonvulsant effects in animal models of epilepsy. This provided a promising molecular target and rationale for identifying selective, high-affinity ligands for LBS with potential for improved antiepileptic properties. The later discovery that synaptic vesicle protein 2A (SV2A) was the molecular correlate of LBS confirmed the novelty of the target. A drug discovery program resulted in the identification of anticonvulsants, comprising two distinct families of high-affinity SV2A ligands possessing different pharmacologic properties. Among these, BRV differed significantly from LEV by its selective, high affinity and differential interaction with SV2A as well as a higher lipophilicity, correlating with more potent and complete seizure suppression, as well as a more rapid brain penetration in preclinical models. Initial studies in animal models also revealed BRV had a greater antiepileptogenic potential than LEV. These properties of BRV highlight its promising potential as an AED that might provide broad-spectrum efficacy, associated with a promising tolerability profile and a fast onset of action. BRV represents the first selective SV2A ligand for epilepsy treatment and may add a significant contribution to the existing armamentarium of AEDs.


Asunto(s)
Anticonvulsivantes/metabolismo , Descubrimiento de Drogas/tendencias , Epilepsia/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Pirrolidinonas/metabolismo , Animales , Anticonvulsivantes/uso terapéutico , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/tendencias , Epilepsia/tratamiento farmacológico , Humanos , Ligandos , Pirrolidinonas/uso terapéutico , Resultado del Tratamiento
11.
Epilepsia ; 57(2): 201-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26663401

RESUMEN

OBJECTIVE: Rapid distribution to the brain is a prerequisite for antiepileptic drugs used for treatment of acute seizures. The preclinical studies described here investigated the high-affinity synaptic vesicle glycoprotein 2A (SV2A) antiepileptic drug brivara-cetam (BRV) for its rate of brain penetration and its onset of action. BRV was compared with levetiracetam (LEV). METHODS: In vitro permeation studies were performed using Caco-2 cells. Plasma and brain levels were measured over time after single oral dosing to audiogenic mice and were correlated with anticonvulsant activity. Tissue distribution was investigated after single dosing to rat (BRV and LEV) and dog (LEV only). Positron emission tomography (PET) displacement studies were performed in rhesus monkeys using the SV2A PET tracer [11C]UCB-J. The time course of PET tracer displacement was measured following single intravenous (IV) dosing with LEV or BRV. Rodent distribution data and physiologically based pharmacokinetic (PBPK) modeling were used to compute blood-brain barrier permeability (permeability surface area product, PS) values and then predict brain kinetics in man. RESULTS: In rodents, BRV consistently showed a faster entry into the brain than LEV; this correlated with a faster onset of action against seizures in audiogenic susceptible mice. The higher permeability of BRV was also demonstrated in human cells in vitro. PBPK modeling predicted that, following IV dosing to human subjects, BRV might distribute to the brain within a few minutes compared with approximately 1 h for LEV (PS of 0.315 and 0.015 ml/min/g for BRV and LEV, respectively). These data were supported by a nonhuman primate PET study showing faster SV2A occupancy by BRV compared with LEV. SIGNIFICANCE: These preclinical data demonstrate that BRV has rapid brain entry and fast brain SV2A occupancy, consistent with the fast onset of action in the audiogenic seizure mice assay. The potential benefit of BRV for treatment of acute seizures remains to be confirmed in clinical studies.


Asunto(s)
Anticonvulsivantes/farmacocinética , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Pirrolidinonas/farmacocinética , Animales , Encéfalo/diagnóstico por imagen , Células CACO-2 , Perros , Epilepsia Refleja , Humanos , Técnicas In Vitro , Levetiracetam , Macaca mulatta , Ratones , Terapia Molecular Dirigida , Permeabilidad , Piracetam/análogos & derivados , Piracetam/farmacocinética , Tomografía de Emisión de Positrones , Ratas
12.
Scand J Pain ; 24(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070164

RESUMEN

OBJECTIVES: This review aims to analyse the published data on preclinical and human experimental and clinical adenosine modulation for pain management. We summarise the translatability of the adenosine pathway for further drug development and aim to reveal subgroups of pain patients that could benefit from targeting the pathway. CONTENT: Chronic pain patients suffer from inadequate treatment options and drug development is generally impaired by the low translatability of preclinical pain models. Therefore, validating the predictability of drug targets is of high importance. Modulation of the endogenous neurotransmitter adenosine gained significant traction in the early 2000s but the drug development efforts were later abandoned. With the emergence of new drug modalities, there is a renewed interest in adenosine modulation in pain management. In both preclinical, human experimental and clinical research, enhancing adenosine signalling through the adenosine receptors, has shown therapeutic promise. A special focus has been on the A1 and A3 receptors both of which have shown great promise and predictive validity in neuropathic pain conditions. SUMMARY: Adenosine modulation shows predictive validity across preclinical, human experimental and clinical investigations. The most compelling evidence is in the field of neuropathic pain, where adenosine has been found to alleviate hyperexcitability and has the potential to be disease-modifying. OUTLOOK: Adenosine modulation show therapeutic potential in neuropathic pain if selective and safe drugs can be developed. New drug modalities such as RNA therapeutics and cell therapies may provide new options.


Asunto(s)
Dolor Crónico , Neuralgia , Humanos , Adenosina/uso terapéutico , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Manejo del Dolor , Dolor Crónico/tratamiento farmacológico
13.
Front Pharmacol ; 15: 1437939, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119604

RESUMEN

Neurodegenerative diseases constitute a global health issue and a major economic burden. They significantly impair both cognitive and motor functions, and their prevalence is expected to rise due to ageing societies and continuous population growth. Conventional therapies provide symptomatic relief, nevertheless, disease-modifying treatments that reduce or halt neuron death and malfunction are still largely unavailable. Amongst the common hallmarks of neurodegenerative diseases are protein aggregation, oxidative stress, neuroinflammation and mitochondrial dysfunction. Transcription factor nuclear factor-erythroid 2-related factor 2 (NRF2) constitutes a central regulator of cellular defense mechanisms, including the regulation of antioxidant, anti-inflammatory and mitochondrial pathways, making it a highly attractive therapeutic target for disease modification in neurodegenerative disorders. Here, we describe the role of NRF2 in the common hallmarks of neurodegeneration, review the current pharmacological interventions and their challenges in activating the NRF2 pathway, and present alternative therapeutic approaches for disease modification.

14.
Epilepsia ; 54 Suppl 4: 3-12, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23909849

RESUMEN

A working group was created to address clinical "gaps to care" as well as opportunities for development of new treatment approaches for epilepsy. The working group primarily comprised clinicians, trialists, and pharmacologists. The group identified a need for better animal models for both efficacy and tolerability, and noted that animal models for potential disease-modifying or antiepileptogenic effect should mirror conditions in human trials. For antiseizure drugs (ASDs), current animal models have not been validated with respect to their relationship to efficacy in common epilepsy syndromes. The group performed an "expert opinion" survey of perceived efficacy of the available ASDs, and identified a specific unmet need for ASDs to treat tonic-atonic and myoclonic seizures. No correlation has as yet been demonstrated between animal models of tolerability and adverse effects (AEs), versus tolerability in humans. There is a clear opportunity for improved therapies in relation to dose-related AEs. The group identified common and rare epilepsy syndromes that could represent opportunities for clinical trials. They identified opportunities for antiepileptogenic (AEG) therapies in both adults and children, acknowledging that the presence of a biomarker would substantially improve the chances of a successful trial. However, the group acknowledged that disease-modifying therapies (given after the first seizure or after the development of epilepsy) would be easier to study than AEG therapies.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Drogas en Investigación/uso terapéutico , Epilepsia/tratamiento farmacológico , Necesidades y Demandas de Servicios de Salud , Animales , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsia Generalizada/tratamiento farmacológico , Epilepsia Tónico-Clónica/tratamiento farmacológico , Humanos
15.
Epilepsia ; 54 Suppl 4: 35-43, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23909852

RESUMEN

Several preclinical proof-of-concept studies have provided evidence for positive treatment effects on epileptogenesis. However, none of these hypothetical treatments has advanced to the clinic. The experience in other fields of neurology such as stroke, Alzheimer's disease, or amyotrophic lateral sclerosis has indicated several problems in the design of preclinical studies, which likely contribute to failures in translating the positive preclinical data to the clinic. The Working Group on "Issues related to development of antiepileptogenic therapies" of the International League Against Epilepsy (ILAE) and the American Epilepsy Society (AES) has considered the possible problems that arise when moving from proof-of-concept antiepileptogenesis (AEG) studies to preclinical AEG trials, and eventually to clinical AEG trials. This article summarizes the discussions and provides recommendations on how to design a preclinical AEG monotherapy trial in adult animals. We specifically address study design, animal and model selection, number of studies needed, issues related to administration of the treatment, outcome measures, statistics, and reporting. In addition, we give recommendations for future actions to advance the preclinical AEG testing.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Drogas en Investigación/uso terapéutico , Adulto , Animales , Anticonvulsivantes/efectos adversos , Niño , Enfermedad Crónica , Ensayos Clínicos Controlados como Asunto , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Aprobación de Drogas , Resistencia a Medicamentos , Drogas en Investigación/efectos adversos , Medicina Basada en la Evidencia , Humanos , National Institute of Neurological Disorders and Stroke (U.S.) , Estados Unidos
16.
Epilepsia ; 54 Suppl 4: 70-4, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23909855

RESUMEN

There is a pressing need to address the current major gaps in epilepsy treatment, in particular drug-resistant epilepsy, antiepileptogenic therapies, and comorbidities. A major concern in the development of new therapies is that current preclinical testing is not sufficiently predictive for clinical efficacy. Methodologic limitations of current preclinical paradigms may partly account for this discrepancy. Here we propose and discuss a strategy for implementing a "phase II" multicenter preclinical drug trial model based on clinical phase II/III studies designed to generate more rigorous preclinical data for efficacy. The goal is to improve the evidence resulting from preclinical studies for investigational new drugs that have shown strong promise in initial preclinical "phase I" studies. This should reduce the risk for expensive clinical studies in epilepsy and therefore increase the appeal for funders (industry and government) to invest in their clinical development.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Ensayos Clínicos Fase II como Asunto , Evaluación Preclínica de Medicamentos , Drogas en Investigación/uso terapéutico , Epilepsia/tratamiento farmacológico , Estudios Multicéntricos como Asunto , Animales , Anticonvulsivantes/efectos adversos , Ensayos Clínicos Fase I como Asunto/economía , Ensayos Clínicos Fase II como Asunto/economía , Ahorro de Costo , Evaluación Preclínica de Medicamentos/economía , Resistencia a Medicamentos , Drogas en Investigación/efectos adversos , Humanos , Estudios Multicéntricos como Asunto/economía , Apoyo a la Investigación como Asunto/economía , Resultado del Tratamiento
17.
Epilepsia ; 53(11): 1860-7, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22708847

RESUMEN

The antiepileptic drugs (AEDs) introduced during the past two decades have provided several benefits: they offered new treatment options for symptomatic treatment of seizures, improved ease of use and tolerability, and lowered risk for hypersensitivity reactions and detrimental drug-drug interactions. These drugs, however, neither attenuated the problem of drug-refractory epilepsy nor proved capable of preventing or curing the disease. Therefore, new preclinical screening strategies are needed to identify AEDs that target these unmet medical needs. New therapies may derive from novel targets identified on the basis of existing hypotheses for drug-refractory epilepsy and the biology of epileptogenesis; from research on genetics, transcriptomics, and epigenetics; and from mechanisms relevant for other therapy areas. Novel targets should be explored using new preclinical screening strategies, and new technologies should be used to develop medium- to high-throughput screening models. In vivo testing of novel drugs should be performed in models mimicking relevant aspects of drug refractory epilepsy and/or epileptogenesis. To minimize the high attrition rate associated with drug development, which arises mainly from a failure to demonstrate sufficient clinical efficacy of new treatments, it is important to define integrated strategies for preclinical screening and experimental trial design. An important tool will be the discovery and implementation of relevant biomarkers that will facilitate a continuum of proof-of-concept approaches during early clinical testing to rapidly confirm or reject preclinical findings, and thereby lower the risk of the overall development effort. In this review, we overview some of the issues related to these topics and provide examples of new approaches that we hope will be more successful than those used in the past.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Ensayos Clínicos como Asunto/métodos , Epilepsia/tratamiento farmacológico , Proyectos de Investigación , Animales , Biomarcadores/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Epilepsia/metabolismo , Epilepsia/fisiopatología , Humanos
19.
EJNMMI Res ; 12(1): 71, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36346513

RESUMEN

BACKGROUND: Antiepileptic drugs, levetiracetam (LEV) and brivaracetam (BRV), bind to synaptic vesicle glycoprotein 2A (SV2A). In their anti-seizure activity, speed of brain entry may be an important factor. BRV showed faster entry into the human and non-human primate brain, based on more rapid displacement of SV2A tracer 11C-UCB-J. To extract additional information from previous human studies, we developed a nonlinear model that accounted for drug entry into the brain and binding to SV2A using brain 11C-UCB-J positron emission tomography (PET) data and the time-varying plasma drug concentration, to assess the kinetic parameter K1 (brain entry rate) of the drugs. METHOD: Displacement (LEV or BRV p.i. 60 min post-tracer injection) and post-dose scans were conducted in five healthy subjects. Blood samples were collected for measurement of drug concentration and the tracer arterial input function. Fitting of nonlinear differential equations was applied simultaneously to time-activity curves (TACs) from displacement and post-dose scans to estimate 5 parameters: K1 (drug), K1(11C-UCB-J, displacement), K1(11C-UCB-J, post-dose), free fraction of 11C-UCB-J in brain (fND(11C-UCB-J)), and distribution volume of 11C-UCB-J (VT(UCB-J)). Other parameters (KD(drug), KD(11C-UCB-J), fP(drug), fP(11C-UCB-J, displacement), fP(11C-UCB-J, post-dose), fND(drug), koff(drug), koff(11C-UCB-J)) were fixed to literature or measured values. RESULTS: The proposed model described well the TACs in all subjects; however, estimates of drug K1 were unstable in comparison with 11C-UCB-J K1 estimation. To provide a conservative estimate of the relative speed of brain entry for BRV vs. LEV, we determined a lower bound on the ratio BRV K1/LEV K1, by finding the lowest BRV K1 or highest LEV K1 that were statistically consistent with the data. Specifically, we used the F test to compare the residual sum of squares with fixed BRV K1 to that with floating BRV K1 to obtain the lowest possible BRV K1; the same analysis was performed to find the highest LEV K1. The lower bound of the ratio BRV K1/LEV K1 was ~ 7. CONCLUSIONS: Under appropriate conditions, this advanced nonlinear model can directly estimate entry rates of drugs into tissue by analysis of PET TACs. Using a conservative statistical cutoff, BRV enters the brain at least sevenfold faster than LEV.

20.
Epilepsia ; 50(3): 387-97, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18627416

RESUMEN

Levetiracetam (Keppra) is an antiepileptic drug (AED) characterized by a novel mechanism of action, unique profile of activity in seizure models, and broad-spectrum clinical efficacy. The present report critically reviews several preclinical studies focused on combination therapy with levetiracetam and other anticonvulsants in various seizure and epilepsy models. Administration of levetiracetam together with many different clinically used AEDs or other anticonvulsants generally enhances their protective activity and, among existing AEDs, this was particularly prevalent with valproate. The protective activity of other AEDs was also enhanced by levetiracetam, which seems to be a universal finding that is independent of seizure model or drug combination studied. However, particularly strong enhancement was observed when levetiracetam was combined with agents either enhancing GABAergic or reducing glutamatergic neurotransmission. Importantly, these combinations were not associated with exacerbation of side effects or pharmacokinetic interactions. Based on the available preclinical data, it appears that combination treatment with levetiracetam and other anticonvulsants provides additional therapeutic benefit that may be attributed to its novel and distinct mechanism of action. Moreover, combinations of levetiracetam with clinically used AEDs that enhance GABAergic inhibition may be considered for rational polytherapy, which is often necessary in drug-resistant patients.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Evaluación Preclínica de Medicamentos , Epilepsia/tratamiento farmacológico , Piracetam/análogos & derivados , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/toxicidad , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Interacciones Farmacológicas , Quimioterapia Combinada , Epilepsia/sangre , Ácido Glutámico/metabolismo , Humanos , Levetiracetam , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Piracetam/farmacocinética , Piracetam/uso terapéutico , Piracetam/toxicidad , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA