RESUMEN
Endogenous glucagon-like peptide-1 (GLP-1) regulates glucose-induced insulin secretion through both direct ß-cell-dependent and indirect gut-brain axis-dependent pathways. However, little is known about the mode of action of the GLP-1 receptor agonist lixisenatide. We studied the effects of lixisenatide (intraperitoneal injection) on insulin secretion, gastric emptying, vagus nerve activity, and brain c-Fos activation in naive, chronically vagotomized, GLP-1 receptor knockout (KO), high-fat diet-fed diabetic mice, or db/db mice. Lixisenatide dose-dependently increased oral glucose-induced insulin secretion that is correlated with a decrease of glycemia. In addition, lixisenatide inhibited gastric emptying. These effects of lixisenatide were abolished in vagotomized mice, characterized by a delay of gastric emptying and in GLP-1 receptor KO mice. Intraperitoneal administration of lixisenatide also increased the vagus nerve firing rate and the number of c-Fos-labeled neurons in the nucleus tractus solitarius (NTS) of the brainstem. In diabetic mouse models, lixisenatide increased the firing rate of the vagus nerve when administrated simultaneously to an intraduodenal glucose. It increased also insulin secretion and c-Fos activation in the NTS. Altogether, our findings show that lixisenatide requires a functional vagus nerve and neuronal gut-brain-islets axis as well as the GLP-1 receptor to regulate glucose-induced insulin secretion in healthy and diabetic mice. NEW & NOTEWORTHY Lixisenatide is an agonist of the glucagon-like protein (GLP)-1 receptor, modified from exendin 4, used to treat type 2 diabetic patients. However, whereas the mode of action of endogenous GLP-1 is extensively studied, the mode of action of the GLP-1 analog lixisenatide is poorly understood. Here, we demonstrated that lixisenatide activates the vagus nerve and recruits the gut-brain axis through the GLP-1 receptor to decrease gastric emptying and stimulate insulin secretion to improve glycemia.
Asunto(s)
Tronco Encefálico/fisiopatología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Secreción de Insulina , Intestinos/fisiopatología , Péptidos/farmacología , Nervio Vago/efectos de los fármacos , Animales , Diabetes Mellitus Tipo 2/fisiopatología , Vaciamiento Gástrico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Péptidos/uso terapéutico , Nervio Vago/fisiopatologíaRESUMEN
Gut microbiota dysbiosis has been implicated in a variety of systemic disorders, notably metabolic diseases including obesity and impaired liver function, but the underlying mechanisms are uncertain. To investigate this question, we transferred caecal microbiota from either obese or lean mice to antibiotic-free, conventional wild-type mice. We found that transferring obese-mouse gut microbiota to mice on normal chow (NC) acutely reduces markers of hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non-inoculated mice, a phenotypic trait blunted in conventional NOD2 KO mice. Furthermore, transferring of obese-mouse microbiota changes both the gut microbiota and the microbiome of recipient mice. We also found that transferring obese gut microbiota to NC-fed mice then fed with a high-fat diet (HFD) acutely impacts hepatic metabolism and prevents HFD-increased hepatic gluconeogenesis compared to non-inoculated mice. Moreover, the recipient mice exhibit reduced hepatic PEPCK and G6Pase activity, fed glycaemia and adiposity. Conversely, transfer of lean-mouse microbiota does not affect markers of hepatic gluconeogenesis. Our findings provide a new perspective on gut microbiota dysbiosis, potentially useful to better understand the aetiology of metabolic diseases.
Asunto(s)
Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/fisiología , Hígado/metabolismo , Obesidad/microbiología , Animales , Disbiosis , Gluconeogénesis , Glucosa-6-Fosfatasa/genética , Ratones , Ratones Endogámicos C57BL , Obesidad/inducido químicamente , Obesidad/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/genéticaRESUMEN
OBJECTIVE: To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. DESIGN: We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis (Pg), Fusobacterium nucleatum and Prevotella intermedia. The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3â months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. RESULTS: Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. CONCLUSIONS: We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis.
Asunto(s)
Inmunidad Adaptativa , Infecciones por Bacteroidaceae/complicaciones , Disbiosis/inmunología , Resistencia a la Insulina/inmunología , Periodontitis/inmunología , Periodontitis/prevención & control , Porphyromonas gingivalis , Animales , Trasplante de Células , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Disbiosis/microbiología , Disbiosis/prevención & control , Femenino , Encía/microbiología , Hiperglucemia/inmunología , Hiperglucemia/microbiología , Interferón gamma/sangre , Interleucina-6/sangre , Lipopolisacáridos/inmunología , Ganglios Linfáticos/citología , Linfocitos , Ratones , Ratones Endogámicos C57BL , Microbiota , Periodontitis/microbiología , Periodontitis/patología , Porphyromonas gingivalis/inmunología , Distribución Aleatoria , Bazo/citología , VacunaciónRESUMEN
OBJECTIVE: The gut microbiota, which is considered a causal factor in metabolic diseases as shown best in animals, is under the dual influence of the host genome and nutritional environment. This study investigated whether the gut microbiota per se, aside from changes in genetic background and diet, could sign different metabolic phenotypes in mice. METHODS: The unique animal model of metabolic adaptation was used, whereby C57Bl/6 male mice fed a high-fat carbohydrate-free diet (HFD) became either diabetic (HFD diabetic, HFD-D) or resisted diabetes (HFD diabetes-resistant, HFD-DR). Pyrosequencing of the gut microbiota was carried out to profile the gut microbial community of different metabolic phenotypes. Inflammation, gut permeability, features of white adipose tissue, liver and skeletal muscle were studied. Furthermore, to modify the gut microbiota directly, an additional group of mice was given a gluco-oligosaccharide (GOS)-supplemented HFD (HFD+GOS). RESULTS: Despite the mice having the same genetic background and nutritional status, a gut microbial profile specific to each metabolic phenotype was identified. The HFD-D gut microbial profile was associated with increased gut permeability linked to increased endotoxaemia and to a dramatic increase in cell number in the stroma vascular fraction from visceral white adipose tissue. Most of the physiological characteristics of the HFD-fed mice were modulated when gut microbiota was intentionally modified by GOS dietary fibres. CONCLUSIONS: The gut microbiota is a signature of the metabolic phenotypes independent of differences in host genetic background and diet.
Asunto(s)
Adaptación Fisiológica/fisiología , Dieta Alta en Grasa , Intestinos/microbiología , Metagenoma/fisiología , Animales , Ciego/microbiología , Citocinas/sangre , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/fisiopatología , Ácidos Grasos no Esterificados/sangre , Prueba de Tolerancia a la Glucosa , Absorción Intestinal/fisiología , Lipopolisacáridos/sangre , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Permeabilidad , FenotipoRESUMEN
The gut-brain-beta cell glucagon-like peptide-1 (GLP-1)-dependent axis and the clock genes both control insulin secretion. Evidence shows that a keystone of this molecular interaction could be the gut microbiota. We analyzed in mice the circadian profile of GLP-1 sensitivity on insulin secretion and the impact of the autonomic neuropathy, antibiotic treated in different diabetic mouse models and in germ-free colonized mice. We show that GLP-1sensitivity is maximal during the dark feeding period, i.e., the postprandial state. Coincidently, the ileum expression of GLP-1 receptor and peripherin is increased and tightly correlated with a subset of clock gene. Since both are markers of enteric neurons, it suggests a role in the gut-brain-beta cell GLP-1-dependent axis. We evaluated the importance of gut microbiota dysbiosis and found that the abundance of ileum bacteria, particularly Ruminococcaceae and Lachnospiraceae, oscillated diurnally, with a maximum during the dark period, along with expression patterns of a subset of clock genes. This diurnal pattern of circadian gene expression and Lachnospiraceae abundance was also observed in two separate mouse models of gut microbiota dysbiosis and of autonomic neuropathy with impaired GLP-1 sensitivity (1.high-fat diet-fed type 2 diabetic, 2.antibiotic-treated/germ-free mice). Our data show that GLP-1 sensitivity relies on specific pattern of intestinal clock gene expression and specific gut bacteria. This new statement opens opportunities to treat diabetic patient with GLP-1-based therapies by using on a possible pre/probiotic co-treatment to improve the time-dependent efficiency of these therapies.
Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animales , Diabetes Mellitus Tipo 2/genética , Disbiosis , Péptido 1 Similar al Glucagón , Humanos , RatonesRESUMEN
OBJECTIVE: The intestinal microbiota to immune system crosstalk is a major regulator of metabolism and hence metabolic diseases. An impairment of the chemokine receptor CX3CR1, as a key regulator shaping intestinal microbiota under normal chow feeding, could be one of the early events of dysglycemia. METHODS: We studied the gut microbiota ecology by sequencing the gut and tissue microbiota. We studied its role in energy metabolism in CX3CR1-deficent and control mice using various bioassays notably the glycemic regulation during fasting and the respiratory quotient as two highly sensitive physiological features. We used antibiotics and prebiotics treatments, and germ free mouse colonization. RESULTS: We identify that CX3CR1 disruption impairs gut microbiota ecology and identified a specific signature associated to the genotype. The glycemic control during fasting and the respiratory quotient throughout the day are deeply impaired. A selected four-week prebiotic treatment modifies the dysbiotic microbiota and improves the fasting state glycemic control of the CX3CR1-deficent mice and following a glucose tolerance test. A 4 week antibiotic treatment also improves the glycemic control as well. Eventually, germ free mice colonized with the microbiota from CX3CR1-deficent mice developed glucose intolerance. CONCLUSIONS: CX3CR1 is a molecular mechanism in the control of the gut microbiota ecology ensuring the maintenance of a steady glycemia and energy metabolism. Its impairment could be an early mechanism leading to gut microbiota dysbiosis and the onset of metabolic disease.
Asunto(s)
Receptor 1 de Quimiocinas CX3C/fisiología , Diabetes Mellitus Tipo 2/microbiología , Microbioma Gastrointestinal/fisiología , Animales , Antibacterianos/administración & dosificación , Glucemia/fisiología , Receptor 1 de Quimiocinas CX3C/deficiencia , Disbiosis , Metabolismo Energético , Masculino , Ratones , Ratones Endogámicos C57BL , Prebióticos/administración & dosificación , Factores de RiesgoRESUMEN
OBJECTIVE: To demonstrate that glycemia and insulin resistance are controlled by a mechanism involving the adaptive immune system and gut microbiota crosstalk. METHODS: We triggered the immune system with microbial extracts specifically from the intestinal ileum contents of HFD-diabetic mice by the process of immunization. 35 days later, immunized mice were fed a HFD for up to two months in order to challenge the development of metabolic features. The immune responses were quantified. Eventually, adoptive transfer of immune cells from the microbiota-immunized mice to naïve mice was performed to demonstrate the causality of the microbiota-stimulated adaptive immune system on the development of metabolic disease. The gut microbiota of the immunized HFD-fed mice was characterized in order to demonstrate whether the manipulation of the microbiota to immune system interaction reverses the causal deleterious effect of gut microbiota dysbiosis on metabolic disease. RESULTS: Subcutaneous injection (immunization procedure) of ileum microbial extracts prevented hyperglycemia and insulin resistance in a dose-dependent manner in response to a HFD. The immunization enhanced the proliferation of CD4 and CD8 T cells in lymphoid organs, also increased cytokine production and antibody secretion. As a mechanism explaining the metabolic improvement, the immunization procedure reversed gut microbiota dysbiosis. Finally, adoptive transfer of immune cells from immunized mice improved metabolic features in response to HFD. CONCLUSIONS: Glycemia and insulin sensitivity can be regulated by triggering the adaptive immunity to microbiota interaction. This reduces the gut microbiota dysbiosis induced by a fat-enriched diet.
RESUMEN
A high-fat diet (HFD) induces metabolic disease and low-grade metabolic inflammation in response to changes in the intestinal microbiota through as-yet-unknown mechanisms. Here, we show that a HFD-derived ileum microbiota is responsible for a decrease in Th17 cells of the lamina propria in axenic colonized mice. The HFD also changed the expression profiles of intestinal antigen-presenting cells and their ability to generate Th17 cells in vitro. Consistent with these data, the metabolic phenotype was mimicked in RORγt-deficient mice, which lack IL17 and IL22 function, and in the adoptive transfer experiment of T cells from RORγt-deficient mice into Rag1-deficient mice. We conclude that the microbiota of the ileum regulates Th17 cell homeostasis in the small intestine and determines the outcome of metabolic disease.
Asunto(s)
Antígenos CD4/inmunología , Linfocitos T CD4-Positivos/microbiología , Diabetes Mellitus Tipo 2/microbiología , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Obesidad/microbiología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/inmunología , Eliminación de Gen , Regulación de la Expresión Génica , Íleon/inmunología , Íleon/metabolismo , Íleon/microbiología , Inmunidad , Interleucina-17/genética , Interleucina-17/inmunología , Masculino , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Obesidad/etiología , Obesidad/genética , Obesidad/inmunología , Células Th17/inmunología , Células Th17/metabolismo , Células Th17/microbiologíaRESUMEN
Depletion of CD4+ T cells from the gut occurs rapidly during acute HIV-1 infection. This has been linked to systemic inflammation and disease progression as a result of translocation of microbial products from the gut lumen into the bloodstream. Combined antiretroviral therapy (cART) substantially restores CD4+ T cell numbers in peripheral blood, but the gut compartment remains largely depleted of such cells for poorly understood reasons. Here, we show that a lack of recruitment of CD4+ T cells to the gut could be involved in the incomplete mucosal immune reconstitution of cART-treated HIV-infected individuals. We investigated the trafficking of CD4+ T cells expressing the gut-homing receptors CCR9 and integrin α4ß7 and found that many of these T cells remained in the circulation rather than repopulating the mucosa of the small intestine. This is likely because expression of the CCR9 ligand CCL25 was lower in the small intestine of HIV-infected individuals. The defective gut homing of CCR9+ß7+ CD4+ T cells - a population that we found included most gut-homing Th17 cells, which have a critical role in mucosal immune defense - correlated with high plasma concentrations of markers of mucosal damage, microbial translocation, and systemic T cell activation. Our results thus describe alterations in CD4+ T cell homing to the gut that could prevent efficient mucosal immune reconstitution in HIV-infected individuals despite effective cART.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Infecciones por VIH/inmunología , Infecciones por VIH/patología , Inmunidad Mucosa , Intestino Delgado/inmunología , Intestino Delgado/patología , Terapia Antirretroviral Altamente Activa , Estudios de Casos y Controles , Movimiento Celular/inmunología , Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , VIH-1 , Humanos , Inmunidad Mucosa/efectos de los fármacos , Cadenas beta de Integrinas/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CCR/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/patología , Células Th17/inmunología , Células Th17/patologíaRESUMEN
Resveratrol (RSV) is a potent anti-diabetic agent when used at high doses. However, the direct targets primarily responsible for the beneficial actions of RSV remain unclear. We used a formulation that increases oral bioavailability to assess the mechanisms involved in the glucoregulatory action of RSV in high-fat diet (HFD)-fed diabetic wild type mice. Administration of RSV for 5 weeks reduced the development of glucose intolerance, and increased portal vein concentrations of both Glucagon-like peptid-1 (GLP-1) and insulin, and intestinal content of active GLP-1. This was associated with increased levels of colonic proglucagon mRNA transcripts. RSV-mediated glucoregulation required a functional GLP-1 receptor (Glp1r) as neither glucose nor insulin levels were modulated in Glp1r-/- mice. Conversely, levels of active GLP-1 and control of glycemia were further improved when the Dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin was co-administered with RSV. In addition, RSV treatment modified gut microbiota and decreased the inflammatory status of mice. Our data suggest that RSV exerts its actions in part through modulation of the enteroendocrine axis in vivo.
Asunto(s)
Glucemia/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Estilbenos/farmacología , Animales , Grasas de la Dieta/efectos adversos , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Receptor del Péptido 1 Similar al Glucagón , Intolerancia a la Glucosa/inducido químicamente , Intolerancia a la Glucosa/tratamiento farmacológico , Intolerancia a la Glucosa/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Intestinos/efectos de los fármacos , Intestinos/microbiología , Masculino , Metagenoma/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Receptores de Glucagón/metabolismo , Resveratrol , Estilbenos/uso terapéutico , Factores de TiempoRESUMEN
A fat-enriched diet modifies intestinal microbiota and initiates a low-grade inflammation, insulin resistance and type-2 diabetes. Here, we demonstrate that before the onset of diabetes, after only one week of a high-fat diet (HFD), live commensal intestinal bacteria are present in large numbers in the adipose tissue and the blood where they can induce inflammation. This translocation is prevented in mice lacking the microbial pattern recognition receptors Nod1 or CD14, but overtly increased in Myd88 knockout and ob/ob mouse. This 'metabolic bacteremia' is characterized by an increased co-localization with dendritic cells from the intestinal lamina propria and by an augmented intestinal mucosal adherence of non-pathogenic Escherichia coli. The bacterial translocation process from intestine towards tissue can be reversed by six weeks of treatment with the probiotic strain Bifidobacterium animalis subsp. lactis 420, which improves the animals' overall inflammatory and metabolic status. Altogether, these data demonstrate that the early onset of HFD-induced hyperglycemia is characterized by an increased bacterial translocation from intestine towards tissues, fuelling a continuous metabolic bacteremia, which could represent new therapeutic targets.