Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Dairy Sci ; 105(2): 1469-1479, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34802742

RESUMEN

Before weaning, dairy calves are at high risk for illness, especially respiratory and digestive diseases, which reduces average daily gain, age at first calving, and first-lactation milk production. Although these illnesses are commonly treated with antibiotics, efforts are being made to reduce antibiotic use, due to concerns about antibiotic-resistant bacteria. The objective was to evaluate the effects of Saccharomyces cerevisiae fermentation products (SCFP) on the immune status of calves, following a lipopolysaccharide (LPS) challenge administered just before weaning. Thirty Holstein bull calves were blocked based on initial body weight and then assigned to 1 of 2 study treatments. The control group (CON) was fed a 24% crude protein:17% fat milk replacer (MR) and calf starter with no SCFP added. The SCFP treatment was fed the same 24% crude protein:17% fat MR with 1 g/d of SmartCare (Diamond V) and calf starter with 0.8% NutriTek (Diamond V). SmartCare and NutriTek are both produced from anaerobic fermentation of S. cerevisiae. Calves were offered 2.84 L (12.5% solids) of MR twice daily at 0630 and 1630 h through d 51; from d 52 to 56, calves were fed MR once daily at 0630 h; and calves were weaned on d 57. Calves also received ad libitum access to a texturized calf starter and water. On d 50, a subset of calves (n = 20, 10 calves per treatment) were enrolled in an LPS challenge. At -1.5, -0.5, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, and 24 h relative to dosing with LPS, 20 mL of blood was collected, and rectal temperature and respiration rate were measured for each calf. Blood serum samples were analyzed for interleukin 6, TNF-α (tumor necrosis factor-α), interferon-gamma, haptoglobin, serum amyloid-A, fibrinogen, nonesterified fatty acid, cortisol, and glucose. This study observed increased concentrations of TNF-α at 1 h and 1.5 h and glucose at 0.5 h after dosing with LPS in SCFP calves compared with CON. Calves supplemented with SCFP also had an increase in respiration rate 0.5 h after dosing with LPS and reduced feed intake the day of the challenge compared with CON calves. These results suggest that dairy calves supplemented with SCFP exhibit an increased acute immune response, as observed by increased TNF-α, glucose, and respiration rate immediately after dosing with LPS, compared with CON calves.


Asunto(s)
Lipopolisacáridos , Saccharomyces cerevisiae , Alimentación Animal/análisis , Animales , Peso Corporal , Bovinos , Dieta/veterinaria , Femenino , Fermentación , Masculino , Leche , Destete
2.
J Dairy Sci ; 105(9): 7738-7749, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35940917

RESUMEN

It is necessary for the dairy industry to reduce calf morbidity and mortality, and the reliance on antibiotics to treat sick calves, to address the growing concern regarding antibiotic resistant bacteria. The primary objective of this study was to evaluate the effect that feeding dairy calves medium-chain fatty acids (MCFA) has on growth performance and health, and the secondary objective was to evaluate the effect of MCFA on energy status around weaning and the adaptive immune response following a vaccine challenge. Thirty-three Holstein bull calves (5 ± 1.6 d of age) were randomly assigned to 1 of 2 treatments. Control (CON) calves were fed milk replacer with no C8:0 or C10:0 oil added and MCFA calves were fed milk replacer with 0.5% of a combination of C8:0 or C10:0 oil added. Body weight and average daily gain were measured weekly. Feed efficiency (gain/feed) and the change in body condition score, hip width, hip height, heart girth, and paunch girth were calculated for the duration of the study. Fecal scores were recorded daily and all medical treatments were documented for the duration of the trial. On d 42, 49, and 56 of the study, a serum sample was collected from each calf and used to measure nonesterified fatty acids, ß-hydroxybutyric acid, insulin, and glucose concentrations to evaluate energy status around weaning. A subset of 11 calves per treatment were enrolled in a vaccine challenge. At 21 ± 1.9 d of age (mean ± standard deviation) calves were vaccinated intramuscularly with 1 mL of endotoxin-free ovalbumin (OVA) mixed with aluminum hydroxide adjuvant. At 42 d of age (±1.9 d), blood samples were collected and used to analyze OVA-specific IgG1 and IgG2, and calves were vaccinated a second time. At 56 d of age (±1.9 d), blood samples were collected to analyze IgG1 and IgG2 as well as IFN-γ and IL-4 secreted from peripheral blood mononuclear cells (PBMC) treated with OVA or phytohemagglutinin. Data were analyzed as a completely randomized design with repeated measures when applicable. A tendency for greater daily fecal score was observed for MCFA calves compared with CON. At d 42 of the study, nonesterified fatty acid concentrations were greater in CON calves compared with MCFA. At 42 and 56 d of age, anti-OVA IgG1 concentrations for CON and MCFA calves were greater than prevaccination samples. This study suggests that feeding MCFA to calves affects the energy status of calves around weaning and vaccinating dairy calves with ovalbumin combined with an aluminum hydroxide adjuvant is an effective way to evaluate the adaptive immune responses.


Asunto(s)
Alimentación Animal , Leucocitos Mononucleares , Hidróxido de Aluminio , Alimentación Animal/análisis , Animales , Peso Corporal , Bovinos , Dieta/veterinaria , Ácidos Grasos , Ácidos Grasos no Esterificados , Inmunidad , Inmunoglobulina G , Masculino , Ovalbúmina , Destete
3.
J Dairy Sci ; 103(3): 2784-2799, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31980225

RESUMEN

Maintaining metabolic balance is a key factor in the health of dairy cattle during the transition from pregnancy to lactation. Little is known regarding the role of the circadian timing system in the regulation of physiological changes during the transition period. We hypothesized that disruption of the cow's circadian timing system by exposure to chronic light-dark phase shifts during the prepartum period would negatively affect the regulation of homeostasis and cause metabolic disturbances, leading to reduced milk production in the subsequent lactation. The objective was to determine the effect of exposure to chronic light-dark phase shift during the last 5 wk prepartum of the nonlactating dry period on core body temperature, melatonin, blood glucose, ß-hydroxybutyric acid (BHB) and nonesterified fatty acid (NEFA) concentrations, and milk production. Multiparous cows were moved to tiestalls at 5 wk before expected calving and assigned to control (CTR; n = 16) or phase-shifted (PS; n = 16) treatments. Control cows were exposed to 16 h of light and 8 h of dark. Phase-shifted cows were exposed to the same photoperiod; however, the light-dark cycle was shifted 6 h every 3 d until parturition. Resting behavior and feed intake were recorded daily. Core body temperature was recorded vaginally for 48 h at 23 and 9 d before expected calving using calibrated data loggers. Blood concentrations of melatonin, glucose, BHB, and NEFA were measured during the pre- and postpartum periods. Milk yield and composition were measured through 60 DIM. Treatment did not affect feed intake or body condition. Cosine fit analysis of 24-h core body temperature and circulating melatonin indicated attenuation of circadian rhythms in the PS treatment compared with the CTR treatment. Phase-shifted cows had lower rest consolidation, as indicated by more total resting time, but shorter resting period durations. Phase-shifted cows had lower blood glucose concentration compared with CTR cows (4 mg/mL decrease), but BHB and NEFA concentrations were similar between PS and CTR cows. Milk yield and milk fat yield were greater in PS compared with CTR cows (2.8 kg/d increase). Thus, exposure to chronic light-dark phase shifts during the prepartum period attenuated circadian rhythms of core body temperature, melatonin, and rest-activity behavior and was associated with increased milk fat and milk yield in the postpartum period despite decreased blood glucose pre- and postpartum. Therefore, less variation in central circadian rhythms may create a more constant milieu that supports the onset of lactogenesis.


Asunto(s)
Glucemia/análisis , Bovinos/fisiología , Ritmo Circadiano , Leche/metabolismo , Ácido 3-Hidroxibutírico/sangre , Animales , Temperatura Corporal/efectos de la radiación , Dieta/veterinaria , Ácidos Grasos no Esterificados/sangre , Femenino , Humanos , Insulina/sangre , Lactancia , Melatonina/sangre , Leche/química , Parto/efectos de la radiación , Periodo Posparto/efectos de la radiación , Embarazo
4.
Front Vet Sci ; 10: 1297158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033643

RESUMEN

Introduction: Bovine respiratory disease (BRD) is a multifactorial disease complex in which bacteria in the upper respiratory tract play an important role in disease development. Previous studies have related the presence of four BRD-pathobionts (Mycoplasma bovis, Histophilus somni, Pasteurella multocida, and Mannheimia haemolytica) in the upper respiratory tract to BRD incidence and mortalities in the dairy and beef cattle industry, but these studies typically only use one time point to compare the abundance of BRD-pathobionts between apparently healthy and BRD-affected cattle. The objective of this study was to characterize the longitudinal development of the nasopharyngeal (NP) microbiome from apparently healthy calves, and in calves with clinical signs of BRD, the microbiota dynamics from disease diagnosis to recovery. Methods: Deep nasopharyngeal swabs were taken from all calves immediately after transport (day 0). If a calf was diagnosed with BRD (n = 10), it was sampled, treated with florfenicol or tulathromycin, and sampled again 1, 5, and 10 days after antibiotic administration. Otherwise, healthy calves (n = 20) were sampled again on days 7 and 14. Bacterial community analysis was performed through 16S rRNA gene amplicon sequencing. Results: The NP microbiome of the healthy animals remained consistent throughout the study, regardless of time. The NP microbiota beta diversity and community composition was affected by tulathromycin or florfenicol administration. Even though BRD-pathobionts were identified by 16S rRNA gene sequencing in BRD-affected animals, no difference was observed in their relative abundance between the BRD-affected and apparently healthy animals. The abundance of BRD-pathobionts was not predictive of disease development while the relative abundance of BRD pathobionts was unique to each BRD-affected calf. Interestingly, at the end of the study period, the genera Mycoplasma was the most abundant genus in the healthy group, while Lactobacillus was the most abundant genus in the animals that recovered from BRD. Discussion: This study highlights that injected antibiotics seem to improve the NP microbiome composition (higher abundance of Lactobacillus and lower abundance of Mycoplasma), and that the relative abundance of BRD-pathobionts differs between individual calves but is not strongly predictive of BRD clinical signs, indicating that additional factors are likely important in the clinical progression of BRD.

5.
Anim Microbiome ; 5(1): 13, 2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36803311

RESUMEN

BACKGROUND: The livestock industry is striving to identify antibiotic alternatives to reduce the need to use antibiotics. Postbiotics, such as Saccharomyces cerevisiae fermentation product (SCFP), have been studied and proposed as potential non-antibiotic growth promoters due to their effects on animal growth and the rumen microbiome; however, little is known of their effects on the hind-gut microbiome during the early life of calves. The objective of this study was to measure the effect of in-feed SCFP on the fecal microbiome of Holstein bull calves through 4 months of age. Calves (n = 60) were separated into two treatments: CON (no SCFP added) or SCFP (SmartCare®, Diamond V, Cedar Rapids, IA, in milk replacer and NutriTek®, Diamond V, Cedar Rapids, IA, incorporated into feed), and were blocked by body weight and serum total protein. Fecal samples were collected on d 0, 28, 56, 84, and 112 of the study to characterize the fecal microbiome community. Data were analyzed as a completely randomized block design with repeated measures when applicable. A random-forest regression method was implemented to more fully understand community succession in the calf fecal microbiome of the two treatment groups. RESULTS: Richness and evenness of the fecal microbiota increased over time (P < 0.001), and SCFP calves tended to increase the evenness of the community (P = 0.06). Based on random-forest regression, calf age as predicted by microbiome composition was significantly correlated with the calf physiological age (R2 = 0.927, P < 1 × 10-15). Twenty-two "age-discriminatory" ASVs (amplicon sequence variants) were identified in the fecal microbiome that were shared between the two treatment groups. Of these, 6 ASVs (Dorea-ASV308, Lachnospiraceae-ASV288, Oscillospira-ASV311, Roseburia-ASV228, Ruminococcaceae-ASV89 and Ruminoccocaceae-ASV13) in the SCFP group reached their highest abundance in the third month, but they reached their highest abundance in the fourth month in the CON group. All other shared ASVs reached their highest abundance at the same timepoint in both treatment groups. CONCLUSIONS: Supplementation of SCFP altered the abundance dynamics of age discriminatory ASVs, suggesting a faster maturation of some members of the fecal microbiota in SCFP calves compared to CON calves. These results demonstrate the value of analyzing microbial community succession as a continuous variable to identify the effects of a dietary treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA