Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 150(2): 291-303, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22817892

RESUMEN

NusG homologs regulate transcription and coupled processes in all living organisms. The Escherichia coli (E. coli) two-domain paralogs NusG and RfaH have conformationally identical N-terminal domains (NTDs) but dramatically different carboxy-terminal domains (CTDs), a ß barrel in NusG and an α hairpin in RfaH. Both NTDs interact with elongating RNA polymerase (RNAP) to reduce pausing. In NusG, NTD and CTD are completely independent, and NusG-CTD interacts with termination factor Rho or ribosomal protein S10. In contrast, RfaH-CTD makes extensive contacts with RfaH-NTD to mask an RNAP-binding site therein. Upon RfaH interaction with its DNA target, the operon polarity suppressor (ops) DNA, RfaH-CTD is released, allowing RfaH-NTD to bind to RNAP. Here, we show that the released RfaH-CTD completely refolds from an all-α to an all-ß conformation identical to that of NusG-CTD. As a consequence, RfaH-CTD binding to S10 is enabled and translation of RfaH-controlled operons is strongly potentiated. PAPERFLICK:


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/metabolismo , Transactivadores/química , Transactivadores/metabolismo , Secuencia de Aminoácidos , Escherichia coli/química , Modelos Moleculares , Datos de Secuencia Molecular , Operón , Biosíntesis de Proteínas , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Ribosómicas/metabolismo , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/metabolismo
2.
Eur Biophys J ; 50(3-4): 453-460, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33881595

RESUMEN

As the scientific community strives to make published results more transparent and reliable, it has become obvious that poor data reproducibility can often be attributed to insufficient quality control of experimental reagents. In this context, proteins and peptides reagents require much stricter quality controls than those routinely performed on them in a significant proportion of research laboratories. Members of the ARBRE-MOBIEU and the P4EU networks have combined their expertise to generate guidelines for the evaluation of purified proteins used in life sciences and medical trials. These networks, representing more than 150 laboratories specialized in protein production and/or protein molecular biophysics, have implemented such guidelines in their respective laboratories. Over a one-year period, the network members evaluated the contribution these guidelines made toward obtaining more productive, robust and reproducible research by correlating the applied quality controls to given samples with the reliability and reproducibility of the scientific data obtained using these samples in follow-up experiments. The results indicate that QC guideline implementation facilitates the optimization of the protein purification process and improves the reliability of downstream experiments. It seems, therefore, that investing in protein QC might be advantageous to all the stakeholders in life sciences (researchers, editors, and funding agencies alike), because this practice improves data veracity and minimizes loss of valuable time and resources. In the light of these conclusions, the network members suggest that the implementation of these simple QC guidelines should become minimal reporting practice in the publication of data derived from the use of protein and peptide reagents.


Asunto(s)
Exactitud de los Datos , Control de Calidad , Reproducibilidad de los Resultados
3.
Eur Biophys J ; 50(3-4): 411-427, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33881594

RESUMEN

Microscale thermophoresis (MST), and the closely related Temperature Related Intensity Change (TRIC), are synonyms for a recently developed measurement technique in the field of biophysics to quantify biomolecular interactions, using the (capillary-based) NanoTemper Monolith and (multiwell plate-based) Dianthus instruments. Although this technique has been extensively used within the scientific community due to its low sample consumption, ease of use, and ubiquitous applicability, MST/TRIC has not enjoyed the unambiguous acceptance from biophysicists afforded to other biophysical techniques like isothermal titration calorimetry (ITC) or surface plasmon resonance (SPR). This might be attributed to several facts, e.g., that various (not fully understood) effects are contributing to the signal, that the technique is licensed to only a single instrument developer, NanoTemper Technology, and that its reliability and reproducibility have never been tested independently and systematically. Thus, a working group of ARBRE-MOBIEU has set up a benchmark study on MST/TRIC to assess this technique as a method to characterize biomolecular interactions. Here we present the results of this study involving 32 scientific groups within Europe and two groups from the US, carrying out experiments on 40 Monolith instruments, employing a standard operation procedure and centrally prepared samples. A protein-small molecule interaction, a newly developed protein-protein interaction system and a pure dye were used as test systems. We characterized the instrument properties and evaluated instrument performance, reproducibility, the effect of different analysis tools, the influence of the experimenter during data analysis, and thus the overall reliability of this method.


Asunto(s)
Benchmarking , Laboratorios , Calorimetría , Reproducibilidad de los Resultados , Temperatura
4.
Nucleic Acids Res ; 47(12): 6504-6518, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31127279

RESUMEN

The synthesis of ribosomal RNA (rRNA) is a tightly regulated central process in all cells. In bacteria efficient expression of all seven rRNA operons relies on the suppression of termination signals (antitermination) and the proper maturation of the synthesized rRNA. These processes depend on N-utilization substance (Nus) factors A, B, E and G, as well as ribosomal protein S4 and inositol monophosphatase SuhB, but their structural basis is only poorly understood. Combining nuclear magnetic resonance spectroscopy and biochemical approaches we show that Escherichia coli SuhB can be integrated into a Nus factor-, and optionally S4-, containing antitermination complex halted at a ribosomal antitermination signal. We further demonstrate that SuhB specifically binds to the acidic repeat 2 (AR2) domain of the multi-domain protein NusA, an interaction that may be involved in antitermination or posttranscriptional processes. Moreover, we show that SuhB interacts with RNA and weakly associates with RNA polymerase (RNAP). We finally present evidence that SuhB, the C-terminal domain of the RNAP α-subunit, and the N-terminal domain of NusG share binding sites on NusA-AR2 and that all three can release autoinhibition of NusA, indicating that NusA-AR2 serves as versatile recruitment platform for various factors in transcription regulation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Monoéster Fosfórico Hidrolasas/química , ARN Ribosómico/biosíntesis , Proteínas de Unión al ARN/química , Factores de Elongación Transcripcional/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , ARN Ribosómico/química , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo
5.
Biophys J ; 118(1): 96-104, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31810657

RESUMEN

RfaH, a two-domain protein from a universally conserved NusG/Spt5 family of regulators, is required for the transcription and translation of long virulence and conjugation operons in many Gram-negative bacterial pathogens. Escherichia coli RfaH action is controlled by a unique large-scale structural rearrangement triggered by recruitment to transcription elongation complexes through a specific DNA element. Upon recruitment, the C-terminal domain of RfaH refolds from an α-hairpin, which is bound to RNA polymerase binding site within the N-terminal domain, into an unbound ß-barrel that interacts with the ribosome. Although structures of the autoinhibited (α-hairpin) and active (ß-barrel) states and plausible refolding pathways have been reported, how this reversible switch is encoded within RfaH sequence and structure is poorly understood. Here, we combined hydrogen-deuterium exchange measurements by mass spectrometry and nuclear magnetic resonance with molecular dynamics to evaluate the differential local stability between both RfaH folds. Deuteron incorporation reveals that the tip of the C-terminal hairpin (residues 125-145) is stably folded in the autoinhibited state (∼20% deuteron incorporation), whereas the rest of this domain is highly flexible (>40% deuteron incorporation), and its flexibility only decreases in the ß-folded state. Computationally predicted ΔG agree with these results by displaying similar anisotropic stability within the tip of the α-hairpin and on neighboring N-terminal domain residues. Remarkably, the ß-folded state shows comparable structural flexibility than nonmetamorphic homologs. Our findings provide information critical for understanding the metamorphic behavior of RfaH and other chameleon proteins and for devising targeted strategies to combat bacterial infections.


Asunto(s)
Proteínas de Escherichia coli/química , Factores de Elongación de Péptidos/química , Transactivadores/química , Proteínas de Escherichia coli/metabolismo , Simulación de Dinámica Molecular , Factores de Elongación de Péptidos/metabolismo , Conformación Proteica , Estabilidad Proteica , Transactivadores/metabolismo
6.
Nucleic Acids Res ; 45(1): 446-460, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-27899597

RESUMEN

NusG, the only universally conserved transcription factor, comprises an N- and a C-terminal domain (NTD, CTD) that are flexibly connected and move independently in Escherichia coli and other organisms. In NusG from the hyperthermophilic bacterium Thermotoga maritima (tmNusG), however, NTD and CTD interact tightly. This closed state stabilizes the CTD, but masks the binding sites for the interaction partners Rho, NusE and RNA polymerase (RNAP), suggesting that tmNusG is autoinhibited. Furthermore, tmNusG and some other bacterial NusGs have an additional domain, DII, of unknown function. Here we demonstrate that tmNusG is indeed autoinhibited and that binding to RNAP may stabilize the open conformation. We identified two interdomain salt bridges as well as Phe336 as major determinants of the domain interaction. By successive weakening of this interaction we show that after domain dissociation tmNusG-CTD can bind to Rho and NusE, similar to the Escherichia coli NusG-CTD, indicating that these interactions are conserved in bacteria. Furthermore, we show that tmNusG-DII interacts with RNAP as well as nucleic acids with a clear preference for double stranded DNA. We suggest that tmNusG-DII supports tmNusG recruitment to the transcription elongation complex and stabilizes the tmNusG:RNAP complex, a necessary adaptation to high temperatures.


Asunto(s)
ADN Bacteriano/química , ARN Polimerasas Dirigidas por ADN/química , Proteínas de Escherichia coli/química , Regulación Bacteriana de la Expresión Génica , Factores de Elongación de Péptidos/química , Factor Rho/química , Thermotoga maritima/genética , Factores de Transcripción/química , Sitios de Unión , Secuencia Conservada , ADN/química , ADN/genética , ADN/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Calor , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Secundaria de Proteína , Factor Rho/genética , Factor Rho/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Relación Estructura-Actividad , Thermotoga maritima/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Nucleic Acids Res ; 44(12): 5971-82, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27174929

RESUMEN

NusA and NusG are major regulators of bacterial transcription elongation, which act either in concert or antagonistically. Both bind to RNA polymerase (RNAP), regulating pausing as well as intrinsic and Rho-dependent termination. Here, we demonstrate by nuclear magnetic resonance spectroscopy that the Escherichia coli NusG amino-terminal domain forms a complex with the acidic repeat domain 2 (AR2) of NusA. The interaction surface of either transcription factor overlaps with the respective binding site for RNAP. We show that NusA-AR2 is able to remove NusG from RNAP. Our in vivo and in vitro results suggest that interaction between NusA and NusG could play various regulatory roles during transcription, including recruitment of NusG to RNAP, resynchronization of transcription:translation coupling, and modulation of termination efficiency.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Factores de Elongación de Péptidos/genética , Factores de Transcripción/genética , Transcripción Genética , Factores de Elongación Transcripcional/genética , Sitios de Unión , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo
9.
Nucleic Acids Res ; 41(22): 10077-85, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23990324

RESUMEN

Escherichia coli RfaH activates gene expression by tethering the elongating RNA polymerase to the ribosome. This bridging action requires a complete refolding of the RfaH C-terminal domain (CTD) from an α-helical hairpin, which binds to the N-terminal domain (NTD) in the free protein, to a ß-barrel, which interacts with the ribosomal protein S10 following RfaH recruitment to its target operons. The CTD forms a ß-barrel when expressed alone or proteolytically separated from the NTD, indicating that the α-helical state is trapped by the NTD, perhaps co-translationally. Alternatively, the interdomain contacts may be sufficient to drive the formation of the α-helical form. Here, we use functional and NMR analyses to show that the denatured RfaH refolds into the native state and that RfaH in which the order of the domains is reversed is fully functional in vitro and in vivo. Our results indicate that all information necessary to determine its fold is encoded within RfaH itself, whereas accessory factors or sequential folding of NTD and CTD during translation are dispensable. These findings suggest that universally conserved RfaH homologs may change folds to accommodate diverse interaction partners and that context-dependent protein refolding may be widespread in nature.


Asunto(s)
Proteínas de Escherichia coli/química , Factores de Elongación de Péptidos/química , Replegamiento Proteico , Transactivadores/química , Proteínas de Escherichia coli/metabolismo , Factores de Elongación de Péptidos/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , Transactivadores/metabolismo
10.
Nat Commun ; 15(1): 3040, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589445

RESUMEN

RfaH, a paralog of the universally conserved NusG, binds to RNA polymerases (RNAP) and ribosomes to activate expression of virulence genes. In free, autoinhibited RfaH, an α-helical KOW domain sequesters the RNAP-binding site. Upon recruitment to RNAP paused at an ops site, KOW is released and refolds into a ß-barrel, which binds the ribosome. Here, we report structures of ops-paused transcription elongation complexes alone and bound to the autoinhibited and activated RfaH, which reveal swiveled, pre-translocated pause states stabilized by an ops hairpin in the non-template DNA. Autoinhibited RfaH binds and twists the ops hairpin, expanding the RNA:DNA hybrid to 11 base pairs and triggering the KOW release. Once activated, RfaH hyper-stabilizes the pause, which thus requires anti-backtracking factors for escape. Our results suggest that the entire RfaH cycle is solely determined by the ops and RfaH sequences and provide insights into mechanisms of recruitment and metamorphosis of NusG homologs across all life.


Asunto(s)
Proteínas de Escherichia coli , Factores de Transcripción , Factores de Transcripción/metabolismo , Transcripción Genética , Transactivadores/metabolismo , Proteínas de Escherichia coli/metabolismo , Factores de Elongación de Péptidos/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ADN
11.
Biochemistry ; 51(33): 6609-22, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22827463

RESUMEN

Members of the 2-hydroxyacyl-CoA dehydratase enzyme family catalyze the ß,α-dehydration of various CoA-esters in the fermentation of amino acids by clostridia. Abstraction of the nonacidic ß-proton of the 2-hydroxyacyl-CoA compounds is achieved by the reductive generation of ketyl radicals on the substrate, which is initiated by the transfer of an electron at low redox potentials. The highly energetic electron needed on the dehydratase is donated by a [4Fe-4S] cluster containing ATPase, termed activator. We investigated the activator of the 2-hydroxyisocaproyl-CoA dehydratase from Clostridium difficile. The activator is a homodimeric protein structurally related to acetate and sugar kinases, Hsc70 and actin, and has a [4Fe-4S] cluster bound in the dimer interface. The crystal structures of the Mg-ADP, Mg-ADPNP, and nucleotide-free states of the reduced activator have been solved at 1.6-3.0 Å resolution, allowing us to define the position of Mg(2+) and water molecules in the vicinity of the nucleotides and the [4Fe-4S] cluster. The structures reveal redox- and nucleotide dependent changes agreeing with the modulation of the reduction potential of the [4Fe-4S] cluster by conformational changes. We also investigated the propensity of the activator to form a complex with its cognate dehydratase in the presence of Mg-ADP and Mg-ADPNP and together with the structural data present a refined mechanistic scheme for the ATP-dependent electron transfer between activator and dehydratase.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Hidroliasas/metabolismo , Adenosina Difosfato/metabolismo , Cristalización , Activación Enzimática , Activadores de Enzimas/química , Activadores de Enzimas/aislamiento & purificación , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Proteínas Hierro-Azufre/metabolismo , Oxidación-Reducción , Unión Proteica
12.
RNA Biol ; 9(12): 1418-23, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23131843

RESUMEN

The textbook view that a primary sequence determines the unique fold of a given protein has been challenged by identification of proteins with variant structures, such as prions. Our recent studies revealed that the transcription factor RfaH simultaneously changes its topology and function. RfaH is a two-domain protein whose N-terminal domain binds to transcribing RNA polymerase, stimulating its processivity. The α-helical C-terminal domain masks the RNA polymerase-binding site of the N-terminal domain, preventing unwarranted recruitment to genes lacking a specific DNA sequence. Upon binding to its DNA target, RfaH domains dissociate, and the C-terminal domain refolds into a ß-barrel. This dramatic transformation allows binding to the ribosomal protein S10 and subsequent recruitment of a ribosome, coupling transcription and translation. We define RfaH as first example of "transformer proteins", in which two alternative structural states have distinct cellular functions and hypothesize that transformer proteins may be widespread in nature.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Elongación de Péptidos/metabolismo , ARN Bacteriano/metabolismo , Transactivadores/metabolismo , Transformación Genética , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Factores de Elongación de Péptidos/genética , Unión Proteica , Biosíntesis de Proteínas , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Transactivadores/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
13.
Elife ; 112022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36255050

RESUMEN

The two-domain protein RfaH, a paralog of the universally conserved NusG/Spt5 transcription factors, is regulated by autoinhibition coupled to the reversible conformational switch of its 60-residue C-terminal Kyrpides, Ouzounis, Woese (KOW) domain between an α-hairpin and a ß-barrel. In contrast, NusG/Spt5-KOW domains only occur in the ß-barrel state. To understand the principles underlying the drastic fold switch in RfaH, we elucidated the thermodynamic stability and the structural dynamics of two RfaH- and four NusG/Spt5-KOW domains by combining biophysical and structural biology methods. We find that the RfaH-KOW ß-barrel is thermodynamically less stable than that of most NusG/Spt5-KOWs and we show that it is in equilibrium with a globally unfolded species, which, strikingly, contains two helical regions that prime the transition toward the α-hairpin. Our results suggest that transiently structured elements in the unfolded conformation might drive the global folding transition in metamorphic proteins in general.


Asunto(s)
Proteínas de Escherichia coli , Factores de Elongación de Péptidos , Pliegue de Proteína , Transactivadores , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Factores de Elongación de Péptidos/metabolismo , Termodinámica , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
14.
J Am Chem Soc ; 133(12): 4342-7, 2011 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-21366233

RESUMEN

The radical enzyme (R)-2-hydroxyisocaproyl-CoA dehydratase catalyzes the dehydration of (R)-2-hydroxyisocaproyl-CoA in the fermentation of l-leucine by the human pathogenic bacterium Clostridium difficile. In contrast to other radical enzymes, such as bacterial class II ribonucleotide reductase or biotin synthase, the Fe/S cluster containing (R)-2-hydroxyisocaproyl-CoA dehydratase requires no special cofactors such as coenzyme B(12) or S-adenosylmethionine for radical generation. Instead it uses a single high-energy electron that is recycled after each turnover. The catalyzed reaction, an atypical α/ß-dehydration, depends on the reductive formation of ketyl radicals on the substrate generated by injection of a single electron from the ATP-dependent activator protein. So far, it is unknown how the active electron is recycled and how unwanted side reactions are prevented, allowing for up to 10,000 turnovers. The crystal structure reveals that the heterodimeric protein contains two [4Fe-4S] clusters at a distance of 12 Å, each coordinated by three cysteines and one terminal ligand. The cluster in the α-subunit is part of the active site. In the absence of substrate, a water/hydroxide ion acts as the fourth ligand. The substrate replaces this ligand and coordinates the cluster via the carbonyl-oxygen of the thioester group. The cluster in the ß-subunit has a terminal sulfhydryl/sulfido ligand and can act as a reservoir to protect the electron from unwanted side reactions via a recycling mechanism. The crystal structure of (R)-2-hydroxyisocaproyl-CoA dehydratase serves as a model for the reductively radical-generating metalloenzymes of the (R)-2-hydroxyacyl-CoA dehydratase and benzoyl-CoA reductase families.


Asunto(s)
Proteínas Bacterianas/química , Clostridioides difficile/enzimología , Electrones , Hidroliasas/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Fermentación , Radicales Libres/química , Radicales Libres/metabolismo , Hidroliasas/metabolismo , Leucina/química , Leucina/metabolismo , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Oxidación-Reducción , Estereoisomerismo
15.
Methods Mol Biol ; 2263: 3-46, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33877592

RESUMEN

One essential prerequisite of any experiment involving a purified protein, such as interaction studies or structural and biophysical characterization, is to work with a "good-quality" sample in order to ensure reproducibility and reliability of the data. Here, we define a "good-quality" sample as a protein preparation that fulfills three criteria: (1) the preparation contains a protein that is pure and soluble and exhibits structural and functional integrity, (2) the protein must be structurally homogeneous, and (3) the preparation must be reproducible. To ensure effective quality control (QC) of all these parameters, we suggest to follow a simple workflow involving the use of gel electrophoresis, light scattering, and spectroscopic experiments. We describe the techniques used in every step of this workflow and provide easy-to-use standard protocols for each step.


Asunto(s)
Proteínas/química , Proteínas/aislamiento & purificación , Dispersión Dinámica de Luz , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas , Estabilidad Proteica , Reproducibilidad de los Resultados , Flujo de Trabajo
16.
Sci Rep ; 10(1): 6607, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32313022

RESUMEN

Antitermination (AT) is a ubiquitous principle in the regulation of bacterial transcription to suppress termination signals. In phage λ antiterminator protein Q controls the expression of the phage's late genes with loading of λQ onto the transcription elongation complex halted at a σ-dependent pause requiring a specific DNA element. The molecular basis of λQ-dependent AT and its dependence on N-utilization substance (Nus) A is so far only poorly understood. Here we used solution-state nuclear magnetic resonance spectroscopy to show that the solution structure of λQ is in agreement with the crystal structure of an N-terminally truncated variant and that the 60 residues at the N-terminus are unstructured. We also provide evidence that multidomain protein NusA interacts directly with λQ via its N-terminal domain (NTD) and the acidic repeat (AR) 2 domain, with the λQ:NusA-AR2 interaction being able to release NusA autoinhibition. The binding sites for NusA-NTD and NusA-AR2 on λQ overlap and the interactions are mutually exclusive with similar affinities, suggesting distinct roles during λQ-dependent AT, e.g. the λQ:NusA-NTD interaction might position NusA-NTD in a way to suppress termination, making NusA-NTD repositioning a general scheme in AT mechanisms.


Asunto(s)
Bacteriófago lambda/metabolismo , Proteínas de Escherichia coli/metabolismo , Elongación de la Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Proteínas Virales/metabolismo , Sitios de Unión , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Soluciones , Factores de Elongación Transcripcional/química , Proteínas Virales/química
17.
iScience ; 23(8): 101352, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32726726

RESUMEN

It has been known for more than 50 years that transcription and translation are physically coupled in bacteria, but whether or not this coupling may be mediated by the two-domain protein N-utilization substance (Nus) G in Escherichia coli is still heavily debated. Here, we combine integrative structural biology and functional analyses to provide conclusive evidence that NusG can physically link transcription with translation by contacting both RNA polymerase and the ribosome. We present a cryo-electron microscopy structure of a NusG:70S ribosome complex and nuclear magnetic resonance spectroscopy data revealing simultaneous binding of NusG to RNAP and the intact 70S ribosome, providing the first direct structural evidence for NusG-mediated coupling. Furthermore, in vivo reporter assays show that recruitment of NusG occurs late in transcription and strongly depends on translation. Thus, our data suggest that coupling occurs initially via direct RNAP:ribosome contacts and is then mediated by NusG.

18.
mBio ; 10(1)2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808693

RESUMEN

In every cell from bacteria to mammals, NusG-like proteins bind transcribing RNA polymerase to modulate the rate of nascent RNA synthesis and to coordinate it with numerous cotranscriptional processes that ultimately determine the transcript fate. Housekeeping NusG factors regulate expression of the bulk of the genome, whereas their highly specialized paralogs control just a few targets. In Escherichiacoli, NusG stimulates silencing of horizontally acquired genes, while its paralog RfaH counters NusG action by activating a subset of these genes. Acting alone or as part of regulatory complexes, NusG factors can promote uninterrupted RNA synthesis, bring about transcription pausing or premature termination, modulate RNA processing, and facilitate translation. Recent structural and mechanistic studies of NusG homologs from all domains of life reveal molecular details of multifaceted interactions that underpin their unexpectedly diverse regulatory roles. NusG proteins share conserved binding sites on RNA polymerase and many effects on the transcription elongation complex but differ in their mechanisms of recruitment, interactions with nucleic acids and secondary partners, and regulatory outcomes. Strikingly, some can alternate between autoinhibited and activated states that possess dramatically different secondary structures to achieve exquisite target specificity.


Asunto(s)
Células Eucariotas/enzimología , Regulación de la Expresión Génica , Células Procariotas/enzimología , Factores de Transcripción/metabolismo , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Unión Proteica , Biosíntesis de Proteínas
19.
Nat Commun ; 10(1): 702, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30742024

RESUMEN

RfaH, member of the NusG/Spt5 family, activates virulence genes in Gram-negative pathogens. RfaH exists in two states, with its C-terminal domain (CTD) folded either as α-helical hairpin or ß-barrel. In free RfaH, the α-helical CTD interacts with, and masks the RNA polymerase binding site on, the N-terminal domain, autoinhibiting RfaH and restricting its recruitment to opsDNA sequences. Upon activation, the domains separate and the CTD refolds into the ß-barrel, which recruits a ribosome, activating translation. Using NMR spectroscopy, we show that only a complete ops-paused transcription elongation complex activates RfaH, probably via a transient encounter complex, allowing the refolded CTD to bind ribosomal protein S10. We also demonstrate that upon release from the elongation complex, the CTD transforms back into the autoinhibitory α-state, resetting the cycle. Transformation-coupled autoinhibition allows RfaH to achieve high specificity and potent activation of gene expression.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Factores de Elongación de Péptidos/metabolismo , Pliegue de Proteína , Proteínas de Unión al ARN/metabolismo , Transactivadores/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Simulación de Dinámica Molecular , Factores de Elongación de Péptidos/genética , Unión Proteica , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas , Ribosomas , Transactivadores/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Virulencia/genética
20.
Elife ; 72018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29741479

RESUMEN

RfaH, a transcription regulator of the universally conserved NusG/Spt5 family, utilizes a unique mode of recruitment to elongating RNA polymerase to activate virulence genes. RfaH function depends critically on an ops sequence, an exemplar of a consensus pause, in the non-template DNA strand of the transcription bubble. We used structural and functional analyses to elucidate the role of ops in RfaH recruitment. Our results demonstrate that ops induces pausing to facilitate RfaH binding and establishes direct contacts with RfaH. Strikingly, the non-template DNA forms a hairpin in the RfaH:ops complex structure, flipping out a conserved T residue that is specifically recognized by RfaH. Molecular modeling and genetic evidence support the notion that ops hairpin is required for RfaH recruitment. We argue that both the sequence and the structure of the non-template strand are read out by transcription factors, expanding the repertoire of transcriptional regulators in all domains of life.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Conformación de Ácido Nucleico , Factores de Elongación de Péptidos/metabolismo , Transactivadores/metabolismo , Sitios de Unión , Análisis Mutacional de ADN , ADN Bacteriano/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Factores de Elongación de Péptidos/química , Unión Proteica , Transactivadores/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA