Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 629(8013): 830-836, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720068

RESUMEN

Anthropogenic change is contributing to the rise in emerging infectious diseases, which are significantly correlated with socioeconomic, environmental and ecological factors1. Studies have shown that infectious disease risk is modified by changes to biodiversity2-6, climate change7-11, chemical pollution12-14, landscape transformations15-20 and species introductions21. However, it remains unclear which global change drivers most increase disease and under what contexts. Here we amassed a dataset from the literature that contains 2,938 observations of infectious disease responses to global change drivers across 1,497 host-parasite combinations, including plant, animal and human hosts. We found that biodiversity loss, chemical pollution, climate change and introduced species are associated with increases in disease-related end points or harm, whereas urbanization is associated with decreases in disease end points. Natural biodiversity gradients, deforestation and forest fragmentation are comparatively unimportant or idiosyncratic as drivers of disease. Overall, these results are consistent across human and non-human diseases. Nevertheless, context-dependent effects of the global change drivers on disease were found to be common. The findings uncovered by this meta-analysis should help target disease management and surveillance efforts towards global change drivers that increase disease. Specifically, reducing greenhouse gas emissions, managing ecosystem health, and preventing biological invasions and biodiversity loss could help to reduce the burden of plant, animal and human diseases, especially when coupled with improvements to social and economic determinants of health.


Asunto(s)
Biodiversidad , Cambio Climático , Enfermedades Transmisibles , Contaminación Ambiental , Especies Introducidas , Animales , Humanos , Efectos Antropogénicos , Cambio Climático/estadística & datos numéricos , Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/etiología , Conservación de los Recursos Naturales/tendencias , Conjuntos de Datos como Asunto , Contaminación Ambiental/efectos adversos , Agricultura Forestal , Bosques , Especies Introducidas/estadística & datos numéricos , Enfermedades de las Plantas/etiología , Medición de Riesgo , Urbanización
2.
Glob Chang Biol ; 30(1): e17145, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273516

RESUMEN

Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands. We experimentally manipulated nest fly abundance in urban and non-urban locations and then characterized nestling health, fledging success, diet, and gene expression patterns related to host defense. Fledging success of non-parasitized nestlings from urban (79%) and non-urban (75%) nests did not differ significantly. However, parasitized, non-urban nestlings lost more blood, and fewer nestlings survived (8%) compared to urban nestlings (50%). Stable isotopic values (δ15 N) from urban nestling feces were higher than those from non-urban nestlings, suggesting that urban nestlings are consuming more protein. δ15 N values correlated negatively with parasite abundance, which suggests that diet might influence host defenses (e.g., tolerance and resistance). Parasitized, urban nestlings differentially expressed genes within pathways associated with red blood cell production (tolerance) and pro-inflammatory response (innate immunological resistance), compared to parasitized, non-urban nestlings. In contrast, parasitized non-urban nestlings differentially expressed genes within pathways associated with immunoglobulin production (adaptive immunological resistance). Our results suggest that urban nestlings are investing more in pro-inflammatory responses to resist parasites but also recovering more blood cells to tolerate blood loss. Although non-urban nestlings are mounting an adaptive immune response, it is likely a last effort by the immune system rather than an effective defense against avian vampire flies since few nestlings survived.


Asunto(s)
Pinzones , Muscidae , Parásitos , Animales , Humanos , Pinzones/parasitología , Ecuador
3.
Mol Ecol ; 32(22): 6059-6069, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37837269

RESUMEN

Host-associated microbiota can be affected by factors related to environmental change, such as urbanization and invasive species. For example, urban areas often affect food availability for animals, which can change their gut microbiota. Invasive parasites can also influence microbiota through competition or indirectly through a change in the host immune response. These interacting factors can have complex effects on host fitness, but few studies have disentangled the relationship between urbanization and parasitism on an organism's gut microbiota. To address this gap in knowledge, we investigated the effects of urbanization and parasitism by the invasive avian vampire fly (Philornis downsi) on the gut microbiota of nestling small ground finches (Geospiza fuliginosa) on San Cristóbal Island, Galápagos. We conducted a factorial study in which we experimentally manipulated parasite presence in an urban and nonurban area. Faeces were then collected from nestlings to characterize the gut microbiota (i.e. bacterial diversity and community composition). Although we did not find an interactive effect of urbanization and parasitism on the microbiota, we did find main effects of each variable. We found that urban nestlings had lower bacterial diversity and different relative abundances of taxa compared to nonurban nestlings, which could be mediated by introduction of the microbiota of the food items or changes in host physiology. Additionally, parasitized nestlings had lower bacterial richness than nonparasitized nestlings, which could be mediated by a change in the immune system. Overall, this study advances our understanding of the complex effects of anthropogenic stressors on the gut microbiota of birds.


Asunto(s)
Pinzones , Microbioma Gastrointestinal , Muscidae , Passeriformes , Animales , Urbanización , Pinzones/microbiología , Bacterias
4.
Oecologia ; 201(4): 877-886, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37012554

RESUMEN

Environmental factors, such as elevated temperature, can have varying effects on hosts and their parasites, which can have consequences for the net outcome of this relationship. The individual direct effects of temperature must be disentangled to determine the net-effect in host-parasite relationships, yet few studies have determined the net-effects in a multi-host system. To address this gap, we experimentally manipulated temperature and parasite presence in the nests of two host species infested by parasitic blowflies (Protocalliphora sialia). We conducted a factorial experiment by increasing temperature (or not) and removing all parasites (or not) in the nests of eastern bluebirds (Sialia sialis) and tree swallows (Tachycineta bicolor). We then measured nestling morphometrics, blood loss, and survival and quantified parasite abundance. We predicted that if temperature had a direct effect on parasite abundance, then elevated temperature would cause similar directional effects on parasite abundance across host species. If temperature had a direct effect on hosts, and therefore an indirect effect on the parasite, parasite abundance would differ across host species. Swallow nests with elevated temperature had fewer parasites compared to nests without temperature manipulation. In contrast, bluebird nests with elevated temperatures had more parasites compared to nests without temperature manipulation. The results of our study demonstrate that elevated temperature can have differential effects on host species, which can impact infestation susceptibility. Furthermore, changing climates could have complex net-effects on parasite fitness and host health across multi-host-parasite interactions.


Asunto(s)
Dípteros , Parásitos , Pájaros Cantores , Golondrinas , Animales , Temperatura , Interacciones Huésped-Parásitos
5.
J Exp Biol ; 224(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34427672

RESUMEN

The purpose of mounting an immune response is to destroy pathogens, but this response comes at a physiological cost, including the generation of oxidative damage. However, many studies on the effects of immune challenges employ a single high dose of a simulated infection, meaning that the consequences of more mild immune challenges are poorly understood. We tested whether the degree of immunological challenge in tree swallows (Tachycineta bicolor) affects oxidative physiology and body mass, and whether these metrics correlate with parasitic nest mite load. We injected 14 day old nestlings with 0, 0.01, 0.1 or 1 mg lipopolysaccharide (LPS) per kg body mass, then collected a blood sample 24 h later to quantify multiple physiological metrics, including oxidative damage (i.e. d-ROMs), circulating amounts of triglyceride and glycerol, and levels of the acute phase protein haptoglobin. After birds had fledged, we identified and counted parasitic nest mites (Dermanyssus spp. and Ornithonyssus spp.). We found that only nestlings injected with 1 mg LPS kg-1 body mass, which is a common dosage in ecoimmunological studies, lost more body mass than individuals from other treatment groups. However, every dose of LPS resulted in a commensurate increase in oxidative damage. Parasitic mite abundance had no effect on oxidative damage across treatments. The amount of oxidative damage correlated with haptoglobin levels, suggesting compensatory mechanisms to limit self-damage during an immune response. We conclude that while only the highest-intensity immune challenges resulted in costs related to body mass, even low-intensity immune challenges result in detectable increases in oxidative damage.


Asunto(s)
Infecciones Bacterianas , Ácaros , Golondrinas , Animales , Humanos , Estrés Oxidativo , Árboles
6.
Oecologia ; 196(4): 1207-1217, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34236465

RESUMEN

Global plastic production has increased exponentially since the 1940s, resulting in the increased presence of anthropogenic debris in the environment. Recent studies have shown that birds incorporate anthropogenic debris into their nests, which can reduce nest ectoparasite loads. However, we know little about the long-term history of interactions among birds, anthropogenic debris, and ectoparasites. Our study took a unique approach to address this issue by determining the prevalence of anthropogenic debris and ectoparasitic nest flies (Protocalliphora and Passeromyia spp.) in 893 bird nests from 224 species between 1832 and 2018, which were sourced from Australian museum collections. The prevalence of anthropogenic material increased from approximately 4% in 1832 to almost 30% in 2018. This change was driven by an increase in the incorporation of synthetic rather than biodegradable anthropogenic debris (by 2018 ~ 25% of all nests contained synthetics), with the first synthetic item being found in a nest from 1956 in the city of Melbourne. Nest parasite prevalence increased over time but contrary to other studies, there was no relationship between habitat type or anthropogenic material and parasite presence. Our study is the first to use museum specimens to quantify temporal and spatial impacts of anthropogenic material on birds, the results of which justifies contemporary concerns regarding the ubiquitous nature of human impacts on terrestrial wildlife.


Asunto(s)
Parásitos , Animales , Australia , Aves , Humanos , Comportamiento de Nidificación , Plásticos , Prevalencia
7.
Parasitol Res ; 119(7): 2337-2342, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32500371

RESUMEN

Philornis flies Meinert (Diptera: Muscidae) have been documented parasitizing over 250 bird species, some of which are endemic species threatened with extinction. Philornis parasitism is hypothesized to affect nestlings disproportionately more than adult birds because limited mobility and exposed skin of nestlings increase their vulnerability to parasitism. We used a comprehensive literature review and our recent fieldwork in the Dominican Republic, Puerto Rico, and Grenada to challenge the idea that parasitism by subcutaneous Philornis species is a phenomenon primarily found in nestlings, a fact that has not been quantified to date. Of the 265 reviewed publications, 125 (49%) reported incidences of parasitism by subcutaneous Philornis, but only 12 included the sampling of adult breeding birds. Nine of these publications (75%) reported Philornis parasitism in adults of ten bird species. During fieldwork in the Dominican Republic, Puerto Rico, and Grenada, we documented 14 instances of parasitism of adult birds of seven avian species. From literature review and fieldwork, adults of at least fifteen bird species across 12 families and four orders of birds were parasitized by at least five Philornis species. In both the published literature and fieldwork, incidences of parasitism of adult birds occurred predominantly in females and was frequently associated with incubation. Although our findings indicate that Philornis parasitism of adult birds is more common than widely presumed, parasite prevalence is still greater in nestlings. In the future, we recommend surveys of adult birds to better understand host-Philornis relationships across life stages. This information may be essential for the development of effective control measures of Philornis to ensure the long-term protection of bird species of conservation concern.


Asunto(s)
Aves/parasitología , Muscidae/fisiología , Animales , Aves/clasificación , Femenino , Incidencia , Larva/clasificación , Larva/fisiología , Masculino , Muscidae/clasificación , Comportamiento de Nidificación , Prevalencia , Indias Occidentales/epidemiología
8.
Ecol Lett ; 22(5): 817-825, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30816626

RESUMEN

Global climate change is increasing the frequency of unpredictable weather conditions; however, it remains unclear how species-level and geographic factors, including body size and latitude, moderate impacts of unusually warm or cool temperatures on disease. Because larger and lower-latitude hosts generally have slower acclimation times than smaller and higher-latitude hosts, we hypothesised that their disease susceptibility increases under 'thermal mismatches' or differences between baseline climate and the temperature during surveying for disease. Here, we examined how thermal mismatches interact with body size, life stage, habitat, latitude, elevation, phylogeny and International Union for Conservation of Nature (IUCN) conservation status to predict infection prevalence of the chytrid fungus Batrachochytrium dendrobatidis (Bd) in a global analysis of 32 291 amphibian hosts. As hypothesised, we found that the susceptibility of larger hosts and hosts from lower latitudes to Bd was influenced by thermal mismatches. Furthermore, hosts of conservation concern were more susceptible than others following thermal mismatches, suggesting that thermal mismatches might have contributed to recent amphibian declines.


Asunto(s)
Quitridiomicetos , Micosis , Altitud , Anfibios , Animales , Tamaño Corporal , Prevalencia
9.
Proc Biol Sci ; 286(1897): 20190049, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30963843

RESUMEN

When confronted with a parasite or pathogen, hosts can defend themselves by resisting or tolerating the attack. While resistance can be diminished when resources are limited, it is unclear how robust tolerance is to changes in environmental conditions. Here, we investigate the sensitivity of tolerance in a single host population living in a highly variable environment. We manipulated the abundance of an invasive parasitic fly, Philornis downsi, in nests of Galápagos mockingbirds ( Mimus parvulus) over four field seasons and measured host fitness in response to parasitism. Mockingbird tolerance to P. downsi varied significantly among years and decreased when rainfall was limited. Video observations indicate that parental provisioning of nestlings appears key to tolerance: in drought years, mockingbirds likely do not have sufficient resources to compensate for the effects of P. downsi. These results indicate that host tolerance is a labile trait and suggest that environmental variation plays a major role in mediating the consequences of host-parasite interactions.


Asunto(s)
Interacciones Huésped-Parásitos , Especies Introducidas , Muscidae/fisiología , Pájaros Cantores/fisiología , Pájaros Cantores/parasitología , Animales , Ambiente , Aptitud Genética , Lluvia , Estaciones del Año , Pájaros Cantores/genética
10.
Proc Biol Sci ; 286(1916): 20192290, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31795872

RESUMEN

Disruptive natural selection within populations exploiting different resources is considered to be a major driver of adaptive radiation and the production of biodiversity. Fitness functions, which describe the relationships between trait variation and fitness, can help to illuminate how this disruptive selection leads to population differentiation. However, a single fitness function represents only a particular selection regime over a single specified time period (often a single season or a year), and therefore might not capture longer-term dynamics. Here, we build a series of annual fitness functions that quantify the relationships between phenotype and apparent survival. These functions are based on a 9-year mark-recapture dataset of over 600 medium ground finches (Geospiza fortis) within a population bimodal for beak size. We then relate changes in the shape of these functions to climate variables. We find that disruptive selection between small and large beak morphotypes, as reported previously for 2 years, is present throughout the study period, but that the intensity of this selection varies in association with the harshness of environment. In particular, we find that disruptive selection was strongest when precipitation was high during the dry season of the previous year. Our results shed light on climatic factors associated with disruptive selection in Darwin's finches, and highlight the role of temporally varying fitness functions in modulating the extent of population differentiation.


Asunto(s)
Pinzones/fisiología , Selección Genética , Animales , Pico , Ecuador , Pinzones/genética , Fenotipo
11.
Mol Ecol ; 28(9): 2441-2450, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31021499

RESUMEN

The gut microbiota of animal hosts can be influenced by environmental factors, such as unnatural food items that are introduced by humans. Over the past 30 years, human presence has grown exponentially in the Galapagos Islands, which are home to endemic Darwin's finches. Consequently, humans have changed the environment and diet of Darwin's finches, which in turn, could affect their gut microbiota. In this study, we compared the gut microbiota of two species of Darwin's finches, small ground finches (Geospiza fuliginosa) and medium ground finches (Geospiza fortis), across sites with and without human presence, where finches prefer human-processed and natural food, respectively. We predicted that: (a) finch microbiota would differ between sites with and without humans due to differences in diet, and (b) gut microbiota of each finch species would be most similar where finches have the highest niche overlap (areas with humans) compared to the lowest niche overlap (areas without humans). We found that gut bacterial community structure differed across sites and host species. Gut bacterial diversity was most distinct between the two species at the site with human presence compared to the site without human presence, which contradicted our predictions. Within host species, medium ground finches had lower bacterial diversity at the site with human presence compared to the site without human presence and bacterial diversity of small ground finches did not differ between sites. Our results show that the gut microbiota of Darwin's finches is affected differently across sites with varying human presence.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Passeriformes/microbiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Biodiversidad , Peso Corporal , Ecosistema , Ecuador , Femenino , Pinzones/microbiología , Microbioma Gastrointestinal/genética , Humanos
12.
J Anim Ecol ; 87(2): 489-499, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29030867

RESUMEN

Environmental stressors, such as pollutants, can increase disease risk in wildlife. For example, the herbicide atrazine affects host defences (e.g. resistance and tolerance) of the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), but the mechanisms for these associations are not entirely clear. Given that pollutants can alter the gut microbiota of hosts, which in turn can affect their health and immune systems, one potential mechanism by which pollutants could increase infection risk is by influencing host-associated microbiota. Here, we test whether early-life exposure to the estimated environmental concentration (EEC; 200 µg/L) of atrazine affects the gut bacterial composition of Cuban tree frog (Osteopilus septentrionalis) tadpoles and adults and whether any atrazine-induced change in community composition might affect host defences against Bd. We also determine whether early-life changes in the stress hormone corticosterone affect gut microbiota by experimentally inhibiting corticosterone synthesis with metyrapone. With the exception of changing the relative abundances of two bacterial genera in adulthood, atrazine did not affect gut bacterial diversity or community composition of tadpoles (in vivo or in vitro) or adults. Metyrapone did not significantly affect bacterial diversity of tadpoles, but significantly increased bacterial diversity of adults. Gut bacterial diversity during Bd exposure did not predict host tolerance or resistance to Bd intensity in tadpoles or adults. However, early-life bacterial diversity negatively predicted Bd intensity as adult frogs. Specifically, Bd intensity as adults was associated negatively with the relative abundance of phylum Fusobacteria in the guts of tadpoles. Our results suggest that the effect of atrazine on Bd infection risk is not mediated by host-associated microbiota because atrazine does not affect microbiota of tadpoles or adults. However, host-associated microbes seem important in host resistance to Bd because the early-life microbiota, during immune system development, predicted later-life infection risk with Bd. Overall, our study suggests that increasing gut bacterial diversity and relative abundances of Fusobacteria might have lasting positive effects on amphibian health.


Asunto(s)
Anuros/inmunología , Anuros/microbiología , Atrazina/toxicidad , Biodiversidad , Microbioma Gastrointestinal/efectos de los fármacos , Interacciones Microbiota-Huesped/inmunología , Animales , Quitridiomicetos/fisiología , Corticosterona/farmacología , Susceptibilidad a Enfermedades , Herbicidas/toxicidad , Larva/efectos de los fármacos , Larva/microbiología , Micosis/microbiología
13.
Biol Lett ; 14(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30021862

RESUMEN

Vertebrate gut microbiota mediate critical physiological processes known to affect host fitness, but the mechanisms that expose wildlife to pioneer members of this important microbial community are not well understood. For example, oviparous vertebrates are thought to acquire gut microbiota through post-natal exposure to the external environment, but recent evidence from placental mammals suggests that the vertebrate reproductive tract harbours microbiota that may inoculate offspring in utero These findings suggest that oviparous vertebrates may be capable of acquiring pioneer microbiota in ovo, but this phenomenon remains unexplored. To fill this knowledge gap, we used culture-independent inventories to determine if the eggs of wild birds and lizards harboured in ovo microbial communities. Our approach revealed distinct in ovo bacterial communities, but fungal communities were indistinguishable from controls. Further, lizard eggs from the same clutch had bacterial community structures that were more similar to each other than to unrelated individuals. These results suggest that oviparous vertebrates may acquire maternal microbiota in ovo, possibly through the inoculation of egg yolk prior to shelling. Therefore, this study may provide a first glimpse of a phenomenon with substantial implications for our understanding of the ecological and evolutionary factors shaping gut microbial communities.


Asunto(s)
Aves/microbiología , Lagartos/microbiología , Óvulo/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , ARN Ribosómico/genética
14.
Microb Ecol ; 76(4): 851-855, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29623358

RESUMEN

Over the past few decades, studies have demonstrated that the gut microbiota strongly influences the physiology, behavior, and fitness of its host. Such studies have been conducted primarily in humans and model organisms under controlled laboratory conditions. More recently, researchers have realized the importance of placing host-associated microbiota studies into a more ecological context; however, few non-destructive methods have been established to collect fecal samples from wild birds. Here, we present an inexpensive and easy-to-use kit for the non-invasive collection of feces from small birds. The portability of the collection kit makes this method amenable to field studies, especially those in remote areas. The main components of the collection kit include a flat-bottomed paper bag, a large modified weigh boat (tray), vinyl-coated hardware cloth fencing (grate), a clothespin, and a 10% bleach solution (to sterilize the tray and grate). In the paper bag, a sterile tray is placed under a small grate, which prevents the birds from contacting the feces and reduces the risk of contamination. After capture, the bird is placed in the bag for 3-5 min until it defecates. After the bird is removed from the bag, the tray is extracted and the fecal sample is moved to a collection tube and frozen or preserved. We believe that our method is an affordable and easy option for researchers studying the gut microbiota of wild birds.


Asunto(s)
Aves/microbiología , Heces/microbiología , Microbioma Gastrointestinal , Técnicas Microbiológicas/métodos , Animales , Animales Salvajes/microbiología , Técnicas Microbiológicas/economía , Técnicas Microbiológicas/instrumentación
15.
Oecologia ; 186(2): 393-404, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29222721

RESUMEN

Adverse effects of anthropogenic changes on biodiversity might be mediated by their impacts on the stress response of organisms. To test this hypothesis, we crossed exposure to metyrapone, a synthesis inhibitor of the stress hormone corticosterone, with exposure to the herbicide atrazine and the fungal pathogen Batrachochytrium dendrobatidis (Bd) to assess whether the effects of these stressors on tadpoles and post-metamorphic frogs were mediated by corticosterone. Metyrapone countered atrazine- and Bd-induced corticosterone elevations. However, atrazine- and Bd-induced reductions in body size were not mediated by corticosterone because they persisted despite metyrapone exposure. Atrazine lowered Bd abundance without metyrapone but increased Bd abundance with metyrapone for tadpoles and frogs. In contrast, atrazine reduced tolerance of Bd infections because frogs exposed to atrazine as tadpoles had reduced growth with Bd compared to solvent controls; this effect was not countered by metyrapone. Our results suggest that the adverse effects of atrazine and Bd on amphibian growth, development, and tolerance of infection are not mediated primarily by corticosterone. A possible mechanism for these effects is energy lost from atrazine detoxification, defense against Bd, or repair from damage caused by atrazine and Bd. Additional studies are needed to evaluate how often the effects of anthropogenic stressors are mediated by stress hormones.


Asunto(s)
Quitridiomicetos , Herbicidas , Anfibios , Animales , Anuros , Corticosterona , Larva
16.
BMC Evol Biol ; 17(1): 183, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28835203

RESUMEN

BACKGROUND: The molecular basis of evolutionary change is assumed to be genetic variation. However, growing evidence suggests that epigenetic mechanisms, such as DNA methylation, may also be involved in rapid adaptation to new environments. An important first step in evaluating this hypothesis is to test for the presence of epigenetic variation between natural populations living under different environmental conditions. RESULTS: In the current study we explored variation between populations of Darwin's finches, which comprise one of the best-studied examples of adaptive radiation. We tested for morphological, genetic, and epigenetic differences between adjacent "urban" and "rural" populations of each of two species of ground finches, Geospiza fortis and G. fuliginosa, on Santa Cruz Island in the Galápagos. Using data collected from more than 1000 birds, we found significant morphological differences between populations of G. fortis, but not G. fuliginosa. We did not find large size copy number variation (CNV) genetic differences between populations of either species. However, other genetic variants were not investigated. In contrast, we did find dramatic epigenetic differences between the urban and rural populations of both species, based on DNA methylation analysis. We explored genomic features and gene associations of the differentially DNA methylated regions (DMR), as well as their possible functional significance. CONCLUSIONS: In summary, our study documents local population epigenetic variation within each of two species of Darwin's finches.


Asunto(s)
Ciudades , Epigénesis Genética , Pinzones/genética , Variación Genética , Animales , Cromosomas/genética , Islas de CpG/genética , Variaciones en el Número de Copia de ADN/genética , Metilación de ADN/genética , Ecuador , Geografía , Masculino , Transducción de Señal/genética , Especificidad de la Especie , Espermatozoides/metabolismo
17.
Oecologia ; 183(4): 1031-1040, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28138818

RESUMEN

Resource availability can significantly alter host-parasite dynamics. Abundant food can provide more resources for hosts to resist infections, but also increase host tolerance of infections by reducing competition between hosts and parasites for food. Whether abundant food favors host resistance or tolerance (or both) might depend on the type of resource that the parasite exploits (e.g., host tissue vs. food), which can vary based on the stage of infection. In our study, we evaluated how low and high resource diets affect Cuban tree frog (Osteopilus septentrionalis) resistance and tolerance of a skin-penetrating, gut nematode Aplectana sp. at each stage of the infection. Compared to a low resource diet, a high resource diet enhanced frog resistance to worm penetration and tolerance while worms traveled to the gut. In contrast, a low resource diet increased resistance to establishment of the infection. After the infection established and worms could access food resources in the gut, a high resource diet enhanced host tolerance of parasites. On a high resource diet, parasitized frogs consumed significantly more food than non-parasitized frogs; when food was then restricted, mass of non-parasitized frogs did not change, whereas mass of parasitized frogs decreased significantly. Thus, a high resource diet increased frog tolerance of established worms because frogs could fully compensate for energy lost to the parasites. Our study shows that host-parasite dynamics are influenced by the effect of resource availability on host resistance and tolerance, which depends on when parasites have access to food and the stage of infection.


Asunto(s)
Anuros , Nematodos , Animales , Dieta , Conducta Alimentaria , Interacciones Huésped-Parásitos
18.
Ecology ; 97(4): 940-50, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27220210

RESUMEN

Introduced parasites threaten native host species that lack effective defenses. Such parasites increase the risk of extinction, particularly in small host populations like those on islands. If some host species are tolerant to introduced parasites, this could amplify the risk of the parasite to vulnerable host species. Recently, the introduced parasitic nest fly Philornis downsi has been implicated in the decline of Darwin's finch populations in the Galápagos Islands. In some years, 100% of finch nests fail due to P. downsi; however, other common host species nesting near Darwin's finches, such as the endemic Galápagos mockingbird (Mimus parvulus), appear to be less affected by P. downsi. We compared effects of P. downsi on mockingbirds and medium ground finches (Geospiza fortis) on Santa Cruz Island in the Galápagos. We experimentally manipulated the abundance of P. downsi in nests of mockingbirds and finches to measure the direct effect of the parasite on the reproductive success of each species of host. We also compared immunological and behavioral responses by each species of host to the fly. Although nests of the two host species had similar parasite densities, flies decreased the fitness of finches but not mockingbirds. Neither host species had a significant antibody-mediated immune response to P. downsi. Moreover, finches showed no significant increase in begging, parental provisioning, or plasma glucose levels in response to the flies. In contrast, parasitized mockingbird nestlings begged more than nonparasitized mockingbird nestlings. Greater begging was correlated with increased parental provisioning behavior, which appeared to compensate for parasite damage. The results of our study suggest that finches are negatively affected by P. downsi because they do not have such behavioral mechanisms for energy compensation. In contrast, mockingbirds are capable of compensation, making them tolerant hosts, and a possible indirect threat to Darwin's finches.


Asunto(s)
Enfermedades de las Aves/parasitología , Especies Introducidas , Miasis/veterinaria , Passeriformes , Envejecimiento , Animales , Conducta Animal , Enfermedades de las Aves/epidemiología , Glucemia , Peso Corporal , Dípteros , Ecuador/epidemiología , Femenino , Masculino , Miasis/epidemiología , Miasis/parasitología , Especificidad de la Especie
19.
Ecology ; 97(4): 940-950, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28792593

RESUMEN

Introduced parasites threaten native host species that lack effective defenses. Such parasites increase the risk of extinction, particularly in small host populations like those on islands. If some host species are tolerant to introduced parasites, this could amplify the risk of the parasite to vulnerable host species. Recently, the introduced parasitic nest fly Philornis downsi has been implicated in the decline of Darwin's finch populations in the Galápagos Islands. In some years, 100% of finch nests fail due to P. downsi; however, other common host species nesting near Darwin's finches, such as the endemic Galápagos mockingbird (Mimus parvulus), appear to be less affected by P. downsi. We compared effects of P. downsi on mockingbirds and medium ground finches (Geospiza fortis) on Santa Cruz Island in the Galápagos. We experimentally manipulated the abundance of P. downsi in nests of mockingbirds and finches to measure the direct effect of the parasite on the reproductive success of each species of host. We also compared immunological and behavioral responses by each species of host to the fly. Although nests of the two host species had similar parasite densities, flies decreased the fitness of finches but not mockingbirds. Neither host species had a significant antibody-mediated immune response to P. downsi. Moreover, finches showed no significant increase in begging, parental provisioning, or plasma glucose levels in response to the flies. In contrast, parasitized mockingbird nestlings begged more than nonparasitized mockingbird nestlings. Greater begging was correlated with increased parental provisioning behavior, which appeared to compensate for parasite damage. The results of our study suggest that finches are negatively affected by P. downsi because they do not have such behavioral mechanisms for energy compensation. In contrast, mockingbirds are capable of compensation, making them tolerant hosts, and a possible indirect threat to Darwin's finches.


Asunto(s)
Pinzones/fisiología , Passeriformes/fisiología , Animales , Ecuador , Monitoreo del Ambiente , Pinzones/parasitología , Islas , Parásitos , Passeriformes/parasitología
20.
Gen Comp Endocrinol ; 193: 68-71, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23892015

RESUMEN

Parasites can negatively affect the evolutionary fitness of their hosts by eliciting physiological stress responses. Parasite-induced stress can be monitored by measuring changes in the adrenal steroid hormone corticosterone. We examined the effect of an invasive parasite on the corticosterone concentrations of a common species of Darwin's finch, the medium ground finch (Geospiza fortis). Philornis downsi (Diptera: Muscidae) is a parasitic nest fly recently introduced to the Galapagos Islands, where it feeds on the blood of nestlings and breeding adult female finches. Previous work shows that P. downsi significantly reduces the reproductive success of several species of finches. We predicted that the effect of P. downsi on host reproductive success is mediated by stress responses in breeding female finches. High stress levels could reduce the ability of females to invest in offspring, thus decreasing their reproductive success. To test this hypothesis, we experimentally manipulated the abundance of P. downsi in nests, then measured baseline and acute stress-induced corticosterone levels, body condition, and hematocrit (red blood cell content). Acute stress-induced corticosterone levels increased over baseline levels, but this response did not differ significantly with parasite treatment. There was also no significant difference in the body condition or hematocrit of females from parasitized versus non-parasitized nests. Our results suggest that the lower reproductive success of females from parasitized nests is not mediated by a physiological stress response.


Asunto(s)
Corticosterona/metabolismo , Dípteros/fisiología , Pinzones/metabolismo , Pinzones/parasitología , Animales , Cruzamiento , Femenino , Comportamiento de Nidificación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA