Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell Commun Signal ; 20(1): 200, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575468

RESUMEN

BACKGROUND: Despite advances in treatment, patients with refractory colorectal cancer (CRC) still have poor long-term survival, so there is a need for more effective therapeutic options. METHODS: To evaluate the HDAC8 inhibition efficacy as a CRC treatment, we examined the effects of various HDAC8 inhibitors (HDAC8i), including BMX (NBM-T-L-BMX-OS01) in combination with temozolomide (TMZ) or other standard CRC drugs on p53 mutated HT29 cells, as well as wild-type p53 HCT116 and RKO cells. RESULTS: We showed that HDAC8i with TMZ cotreatment resulted in HT29 arrest in the S and G2/M phase, whereas HCT116 and RKO arrest in the G0/G1 phase was accompanied by high sub-G1. Subsequently, this combination approach upregulated p53-mediated MGMT inhibition, leading to apoptosis. Furthermore, we observed the cotreatment also enabled triggering of cell senescence and decreased expression of stem cell biomarkers. Mechanistically, we found down-expression levels of ß-catenin, cyclin D1 and c-Myc via GSK3ß/ß-catenin signaling. Intriguingly, autophagy also contributes to cell death under the opposite status of ß-catenin/p62 axis, suggesting that there exists a negative feedback regulation between Wnt/ß-catenin and autophagy. Consistently, the Gene Set Enrichment Analysis (GSEA) indicated both apoptotic and autophagy biomarkers in HT29 and RKO were upregulated after treating with BMX. CONCLUSIONS: BMX may act as a HDAC8 eraser and in combination with reframed-TMZ generates a remarkable synergic effect, providing a novel therapeutic target for various CRCs. Video Abstract.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Inhibidores de Histona Desacetilasas , Temozolomida , Humanos , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo , Temozolomida/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Vía de Señalización Wnt , Inhibidores de Histona Desacetilasas/farmacología , Células HT29
2.
Medicina (Kaunas) ; 58(5)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35630105

RESUMEN

Background and Objectives: Minimally invasive spine surgery reduces destruction of the paraspinal musculature and improves spinal stability. Nevertheless, screw loosening remains a challenging issue in osteoporosis patients receiving spinal fixation and fusion surgery. Moreover, adjacent vertebral compression fracture is a major complication, particularly in patients with osteoporosis. We assessed long-term imaging results to investigate the outcomes of osteoporosis patients with two-level degenerative spine disease receiving minimally invasive surgery with the assistance of a robotic system. Materials and Methods: We retrospectively analyzed consecutive osteoporosis patients who underwent minimally invasive surgery with the assistance of a robotic system at our institution during 2013-2016. All patients were diagnosed with osteoporosis according to the World Health Organization criteria. All patients were diagnosed with two levels of spinal degenerative disease, including L34, L45, or L5S1. The study endpoints included screw-loosening condition, cage fusion, and vertebral body heights of the adjacent, first fixation segment, and second fixation segments before and after surgery, including the anterior, middle, and posterior third parts of the vertebral body. Differences in vertebral body heights before and after surgery were evaluated using the F-test. Results: Nineteen consecutive osteoporosis patients were analyzed. A lower rate of screw loosening was observed in osteoporosis patients in our study. There were no significant differences between the preoperative and postoperative vertebral body heights, including adjacent and fixation segments. Conclusions: According to our retrospective study, we report that minimally invasive surgery with the assistance of a robotic system provided better screw fixation, a lower rate of screw loosening, and a lesser extent of vertebral compression fracture after spinal fixation and fusion surgery in osteoporosis patients.


Asunto(s)
Fracturas por Compresión , Osteoporosis , Procedimientos Quirúrgicos Robotizados , Fracturas de la Columna Vertebral , Fusión Vertebral , Fracturas por Compresión/etiología , Fracturas por Compresión/cirugía , Humanos , Vértebras Lumbares/cirugía , Osteoporosis/etiología , Estudios Retrospectivos , Fracturas de la Columna Vertebral/cirugía , Fusión Vertebral/métodos
3.
Medicina (Kaunas) ; 58(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36013593

RESUMEN

Background and Objectives: Supplementary motor area (SMA) syndrome is a common post-operation complication in intra-axial brain tumors, such as glioma. Direct damage to parenchyma or scarification of the major vessels during an operation are the main causes. However, it is rarely reported as a postoperative complication in extra-axial tumors. Materials and Methods: We reviewed 11 reported cases of supplementary motor area syndrome after removal of extra-axial meningiomas in the English literature from the PubMed database. We also added our case, which presented as an unusual huge meningioma, to analyze the clinical parameters and outcomes of these 12 reported cases. Results: Recovery time of supplementary motor area syndrome in extra-axial tumors could be within 1-7 weeks, shorter than intra-axial tumors (2-9 weeks). Epilepsy and progressive limb weakness are the most common presentations in 50% of cases. Different degrees of postoperative muscle power deterioration were noted in the first 48 h (from 0-4). Lower limbs (66.6%, 8/12) were slightly predominant compared to upper limbs (58.3%, 7/12). Mutism aphasia was also observed in 41.6% (5/12, including our case), and occurred in tumors which were involved in the dominant side; this recovered faster than limb weakness. Discussion and Conclusions: Our work indicated that SMA syndrome could occur in extra-axial brain tumors presenting as mutism aphasia and limb weakness without any direct brain parenchyma damage. In our analysis, we found that recovery time of postoperative motor function deficit could be within 1-7 weeks. Our study also provides a further insight of SMA syndrome in extra-axial brain tumors.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Meníngeas , Meningioma , Corteza Motora , Mutismo , Neoplasias Encefálicas/cirugía , Humanos , Neoplasias Meníngeas/complicaciones , Neoplasias Meníngeas/cirugía , Meningioma/complicaciones , Meningioma/cirugía , Corteza Motora/patología , Corteza Motora/cirugía , Mutismo/etiología , Síndrome
4.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-34199259

RESUMEN

Beta2-microglobulin (B2M) a key component of major histocompatibility complex class I molecules, which aid cytotoxic T-lymphocyte (CTL) immune response. However, the majority of studies of B2M have focused only on amyloid fibrils in pathogenesis to the neglect of its role of antimicrobial activity. Indeed, B2M also plays an important role in innate defense and does not only function as an adjuvant for CTL response. A previous study discovered that human aggregated B2M binds the surface protein structure in Streptococci, and a similar study revealed that sB2M-9, derived from native B2M, functions as an antibacterial chemokine that binds Staphylococcus aureus. An investigation of sB2M-9 exhibiting an early lymphocyte recruitment in the human respiratory epithelium with bacterial challenge may uncover previously unrecognized aspects of B2M in the body's innate defense against Mycobactrium tuberculosis. B2M possesses antimicrobial activity that operates primarily under pH-dependent acidic conditions at which B2M and fragmented B2M may become a nucleus seed that triggers self-aggregation into distinct states, such as oligomers and amyloid fibrils. Modified B2M can act as an antimicrobial peptide (AMP) against a wide range of microbes. Specifically, these AMPs disrupt microbe membranes, a feature similar to that of amyloid fibril mediated cytotoxicity toward eukaryotes. This study investigated two similar but nonidentical effects of B2M: the physiological role of B2M, in which it potentially acts against microbes in innate defense and the role of B2M in amyloid fibrils, in which it disrupts the membrane of pathological cells. Moreover, we explored the pH-governing antibacterial activity of B2M and acidic pH mediated B2M amyloid fibrils underlying such cytotoxicity.


Asunto(s)
Amiloide/toxicidad , Antibacterianos/farmacología , Microglobulina beta-2/metabolismo , Secuencia de Aminoácidos , Animales , Muerte Celular/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Microglobulina beta-2/química
5.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072831

RESUMEN

Although histone deacetylase 8 (HDAC8) plays a role in glioblastoma multiforme (GBM), whether its inhibition facilitates the treatment of temozolomide (TMZ)-resistant GBM (GBM-R) remains unclear. By assessing the gene expression profiles from short hairpin RNA of HDAC8 in the new version of Connectivity Map (CLUE) and cells treated by NBM-BMX (BMX)-, an HDAC8 inhibitor, data analysis reveals that the Wnt signaling pathway and apoptosis might be the underlying mechanisms in BMX-elicited treatment. This study evaluated the efficacy of cotreatment with BMX and TMZ in GBM-R cells. We observed that cotreatment with BMX and TMZ could overcome resistance in GBM-R cells and inhibit cell viability, markedly inhibit cell proliferation, and then induce cell cycle arrest and apoptosis. In addition, the expression level of ß-catenin was reversed by proteasome inhibitor via the ß-catenin/ GSK3ß signaling pathway to reduce the expression level of c-Myc and cyclin D1 in GBM-R cells. BMX and TMZ cotreatment also upregulated WT-p53 mediated MGMT inhibition, thereby triggering the activation of caspase-3 and eventually leading to apoptosis in GBM-R cells. Moreover, BMX and TMZ attenuated the expression of CD133, CD44, and SOX2 in GBM-R cells. In conclusion, BMX overcomes TMZ resistance by enhancing TMZ-mediated cytotoxic effect by downregulating the ß-catenin/c-Myc/SOX2 signaling pathway and upregulating WT-p53 mediated MGMT inhibition. These findings indicate a promising drug combination for precision personal treating of TMZ-resistant WT-p53 GBM cells.


Asunto(s)
Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioblastoma/tratamiento farmacológico , Histona Desacetilasas/genética , Proteínas Represoras/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , beta Catenina/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/patología , Humanos , Proteínas Represoras/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Temozolomida/efectos adversos , Temozolomida/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Int J Mol Sci ; 20(3)2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30678307

RESUMEN

Thioridazine (THD) is a common phenothiazine antipsychotic drug reported to suppress growth in several types of cancer cells. We previously showed that THD acts as an antiglioblastoma and anticancer stem-like cell agent. However, the signaling pathway underlying autophagy and apoptosis induction remains unclear. THD treatment significantly induced autophagy with upregulated AMPK activity and engendered cell death with increased sub-G1 in glioblastoma multiform (GBM) cell lines. Notably, through whole gene expression screening with THD treatment, frizzled (Fzd) proteins, a family of G-protein-coupled receptors, were found, suggesting the participation of Wnt/ß-catenin signaling. After THD treatment, Fzd-1 and GSK3ß-S9 phosphorylation (inactivated form) was reduced to promote ß-catenin degradation, which attenuated P62 inhibition. The autophagy marker LC3-II markedly increased when P62 was released from ß-catenin inhibition. Additionally, the P62-dependent caspase-8 activation that induced P53-independent apoptosis was confirmed by inhibiting T-cell factor/ß-catenin and autophagy flux. Moreover, treatment with THD combined with temozolomide (TMZ) engendered increased LC3-II expression and caspase-3 activity, indicating promising drug synergism. In conclusion, THD induces autophagy in GBM cells by not only upregulating AMPK activity, but also enhancing P62-mediated autophagy and apoptosis through Wnt/ß-catenin signaling. Therefore, THD is a potential alternative therapeutic agent for drug repositioning in GBM.


Asunto(s)
Autofagia/efectos de los fármacos , Cateninas/metabolismo , Glioma/metabolismo , Tioridazina/farmacología , Apoptosis/efectos de los fármacos , Beclina-1/metabolismo , Western Blotting , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
7.
Plant Foods Hum Nutr ; 71(3): 322-9, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27405766

RESUMEN

Flesh of Basella alba L. mature fruits bearing deep-violet juice provides a novel and potential source of natural colorant. To minimize the pigment purification process and warrant safety acceptability, B. alba colorant powder (BACP) was prepared using mature fruits through a practical batch preparation and subjected to fundamental pigment characterization, food safety assessment and bio-function evaluation. Yield of the dehydrated B. alba colorant powder (BACP) was 37 g/kg fresh fruits. Reconstituted aqueous solution of the BACP exhibited an identical visible spectrum (400-700 nm) as that of fresh juice. Color of the solution (absorbance at 540 nm) was stable in a broad pH ranged from 3 to 8 and enhanced by co-presence of calcium and magnesium ions, while was rapidly bleached by ferrous and ferric ions. For in vivo food safety evaluation, ICR mice were daily gavage administered with BACP up to 1000 mg/kg body weight for 28 days. Organ weight determination, serum biochemical analysis and histopathological examination of hearts, livers, lungs and kidneys revealed no obvious health hazard. In vitro anti-inflammatory activity of BACP was characterized in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. BACP exerted potent anti-inflammatory activity by down-regulation of inflammatory mediators including nitric oxide (NO), prostaglandin E2 (PGE2), TNF-α, IL-1ß, IL-6 and IL-12 and the blockage of IκB kinase (IKK)/IκB/nuclear factor-κ B (NFκB) activation cascade. These results supported that BACP may serve as a beneficial alternative of natural food colorant.


Asunto(s)
Colorantes de Alimentos/química , Manipulación de Alimentos , Inocuidad de los Alimentos , Jugos de Frutas y Vegetales/análisis , Tracheophyta/química , Alanina Transaminasa/sangre , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Aspartato Aminotransferasas/sangre , Nitrógeno de la Urea Sanguínea , Colesterol/sangre , Creatinina/sangre , Desecación , Dinoprostona/genética , Dinoprostona/metabolismo , Regulación hacia Abajo , Colorantes de Alimentos/farmacología , Frutas/química , Concentración de Iones de Hidrógeno , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , L-Lactato Deshidrogenasa/sangre , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos ICR , FN-kappa B/metabolismo , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Polvos/química , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
8.
Cell Cycle ; 22(21-22): 2485-2503, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38053243

RESUMEN

Recent study had deepened our knowledge of the mitochondrial dynamics to classify mitochondrial fission into two types. To further clarify the relationship between the two distinct fission machinery and the four major adaptors of Drp1, we propose a model of mechanism elucidating the multiple functions of phospho-Drp1 with its adaptors during cell cycle and providing in-depth insights into the molecular basis and evolutionary implications in depth. The model highlights not only the clustering characteristics of different phospho-Drp1 with respective subsets of mitochondrial pro-fission adaptors but also the correlation, crosstalk and shifting between different clustering of phosphorylated Drp1-adaptors during different key fission situations. Particularly, phospho-Drp1 (Ser616) couples with Mff/MiD51 to exert mitochondrial division and phospho-Drp1 (Ser637) couples with MiD49/Fis1 to execute mitophagy in M-phase. We then apply the model to address the relationship of mitochondrial dynamics to Parkinson's disease (PD) and carcinogenesis. Our proposed model is indeed compatible with current research results and pathological observations, providing promising directions for future treatment design.


Asunto(s)
Dinaminas , Dinámicas Mitocondriales , Dinaminas/genética , Dinaminas/metabolismo , División Celular , Ciclo Celular , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
9.
J Cell Commun Signal ; 17(3): 1039-1054, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37133713

RESUMEN

GSK3ß interacting protein (GSKIP) is a small A-kinase anchor protein previously reported to mediate the N-cadherin/ß-catenin pool for differentiation in SH-SY5Y cells through overexpression of GSKIP to present the neuron outgrowth phenotype. To further investigate how GSKIP functions in neurons, CRISPR/Cas9 technology was utilized to knock out GSKIP (GSKIP-KO) in SH-SY5Y. Several GSKIP-KO clones resulted in an aggregation phenotype and reduced cell growth without retinoic acid (RA) treatment. However, neuron outgrowth was still observed in GSKIP-KO clones treated with RA. The GSKIP-KO clones exhibited an aggregation phenotype through suppression of GSK3ß/ß-catenin pathways and cell cycle progression rather than cell differentiation. Gene set enrichment analysis indicated that GSKIP-KO was related to epithelial mesenchymal transition/mesenchymal epithelial transition (EMT/MET) and Wnt/ß-catenin/cadherin signaling pathways, suppressing cell migration and tumorigenesis through the inhibition of Wnt/ß-catenin mediated EMT/MET. Conversely, reintroduction of GSKIP into GSKIP-KO clones restored cell migration and tumorigenesis. Notably, phosphor-ß-catenin (S675) and ß-catenin (S552) but not phosphor-ß-catenin (S33/S37/T41) translocated into the nucleus for further gene activation. Collectively, these results suggested that GSKIP may function as an oncogene to form an aggregation phenotype for cell survival in harsh environments through EMT/MET rather than differentiation in the GSKIP-KO of SH-SY5Y cells. GSKIP Implication in Signaling Pathways with Potential Impact on SHSY-5Y Cell Aggregation.

10.
Cell Signal ; 97: 110391, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35728705

RESUMEN

Glycogen synthase kinase 3 (GSK3)-ß (GSK3ß) interaction protein (GSKIP) is one of the smallest A-kinase anchoring proteins that possesses a binding site for GSK3ß. Recently, our group identified the protein kinase A (PKA)-GSKIP-GSK3ß-X axis; knowledge of this axis may help us decipher the many roles of GSKIP and perhaps help explain the evolutionary reason behind the interaction between GSK3ß and PKA. In this review, we highlight the critical and multifaceted role of GSKIP in facilitating PKA kinase activity and its function as a scaffolding protein in signaling pathways. We also highlight how these pivotal PKA and GSK3 kinases can control context-specific functions and interact with multiple target proteins, such as ß-catenin, Drp1, Tau, and other proteins. GSKIP is a key regulator of multiple mechanisms because of not only its location at certain subcellular compartments but also its serial changes during the developmental process. Moreover, the involvement of critical upstream regulatory signaling pathways in GSKIP signaling in various cancers, such as miRNA (microRNA) and lncRNA (long noncoding RNA), may help in the identification of therapeutic targets in the era of precision medicine and personalized therapy. Finally, we emphasize on the model of the early stage of pathogenesis of Alzheimer Disease (AD). Although the model requires validation, it can serve as a basis for diagnostic biomarkers development and drug discovery for early-stage AD.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Proteínas Represoras , Proteínas de Anclaje a la Quinasa A/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fosforilación , Proteínas Represoras/metabolismo
11.
PLoS One ; 17(1): e0262138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35051222

RESUMEN

We previously revealed the origin of mammalian simple-type glycogen synthase kinase interaction protein (GSKIP), which served as a scavenger and a competitor in the Wnt signaling pathway during evolution. In this study, we investigated the conserved and nonconserved regions of the composite-type GSKIP by utilizing bioinformatics tools, site-directed mutagenesis, and yeast two-hybrid methods. The regions were denoted as the pre-GSK3ß binding site, which is located at the front of GSK3ß-binding sites. Our data demonstrated that clustered mitochondria protein 1 (CLU1), a type of composite-type GSKIP that exists in the mitochondria of all eukaryotic organisms, possesses the protein known as domain of unknown function 727 (DUF727), with a pre-GSK3ß-binding site and a mutant GSK3ß-binding flanking region. Another type of composite-type GSKIP, armadillo repeat containing 4 (ARMC4), which is known for cilium movement in vertebrates, contains an unintegrated DUF727 flanking region with a pre-GSK3ß-binding site (115SPxF118) only. In addition, the sequence of the GSK3ß-binding site in CLU1 revealed that Q126L and V130L were not conserved, differing from the ideal GSK3ß-binding sequence of simple-type GSKIP. We further illustrated two exceptions, namely 70 kilodalton heat shock proteins (Hsp70/DnaK) and Mitofilin in nematodes, that presented an unexpected ideal GSK3ß-binding region with a pre-GSK3ß sequence; this composite-type GSKIP could only occur in vertebrate species. Furthermore, we revealed the importance of the pre-GSK3ß-binding site (118F or 118Y) and various mutant GSK3ß-binding sites of composite-type GSKIP. Collectively, our data suggest that the new composite-type GSKIP starts with a DUF727 domain followed by a pre-GSK3ß-binding site, with the subsequent addition of the GSK3ß-binding site, which plays vital roles for CLU1, Mitofilin, and ARMC4 in mitochondria and Wnt signaling pathways during evolution.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Mitocondrias/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas del Dominio Armadillo/química , Proteínas del Dominio Armadillo/genética , Sitios de Unión , Clonación Molecular , Secuencia Conservada , Evolución Molecular , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Filogenia , Unión Proteica , Conformación Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Represoras/química , Análisis de Secuencia de ADN , Técnicas del Sistema de Dos Híbridos , Vía de Señalización Wnt
12.
Immunopharmacol Immunotoxicol ; 33(3): 454-60, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21108581

RESUMEN

Wu-Ling-Shen, a lesser study medicinal fungus (Xylaria nigripes), is popular for treating insomnia and trauma in the traditional Chinese medicine. In this study, our aim was to examine the protective effects of X. nigripes extract on carbon tetrachloride (CCl(4))-induced acute hepatotoxicity in mice, and its content of polyphenolic constituents. The X. nigripes aqueous extract (XN-T) at 500 and 1000 mg/kg was given intragastrically to mice for 9 consecutive days, followed by receiving subcutaneously 2 mL/kg of 40% CCl(4) in olive oil to induce hepatotoxicity. Blood and liver tissues were collected for biochemical and histological analyses. Analysis of polyphenolic compounds was performed by RP-HPLC. Results showed that XN-T at 500 and 1000 mg/kg significantly prevented the elevation of serum glutamate oxalate transaminase (sGOT), serum glutamate pyruvate transaminase (sGPT), and liver thiobarbituric acid reactive substances (TBARS) levels, and caused an increase in the liver superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) concentrations, as well as serum total antioxidant activity in the CCl(4)-induced hepatotoxicated mice. It was as good as silymarin (100 mg/kg) in normalization of oxidative stress parameters. Furthermore, liver histological observation also showed an obvious amelioration in the liver conditions in XN-T-treated animals. XN-T was found to contain a higher level of epicatechin, catechin, and p-coumaric acid. These results conclude that XN exerts effective protection against CCl(4)-induced liver injury in mice, and its mechanism of action could be through the effects of antioxidants on reducing the oxidative stress.


Asunto(s)
Intoxicación por Tetracloruro de Carbono/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Extractos Vegetales/farmacología , Xylariales/química , Alanina Transaminasa/sangre , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Aspartato Aminotransferasas/sangre , Intoxicación por Tetracloruro de Carbono/enzimología , Intoxicación por Tetracloruro de Carbono/metabolismo , Catalasa/metabolismo , Catequina/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Ácidos Cumáricos/farmacología , Glutatión Peroxidasa/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Hígado/patología , Masculino , Medicina Tradicional China/métodos , Ratones , Ratones Endogámicos ICR , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Propionatos , Silimarina/farmacología , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
13.
Biomolecules ; 11(3)2021 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805672

RESUMEN

Mitochondrial fission and fusion cycles are integrated with cell cycle progression. Here we first re-visited how mitochondrial ETC inhibition disturbed mitosis progression, resulting in multipolar spindles formation in HeLa cells. Inhibitors of ETC complex I (rotenone, ROT) and complex III (antimycin A, AA) decreased the phosphorylation of Plk1 T210 and Aurora A T288 in the mitotic phase (M-phase), especially ROT, affecting the dynamic phosphorylation status of fission protein dynamin-related protein 1 (Drp1) and the Ser637/Ser616 ratio. We then tested whether specific Drp1 inhibitors, Mdivi-1 or Dynasore, affected the dynamic phosphorylation status of Drp1. Similar to the effects of ROT and AA, our results showed that Mdivi-1 but not Dynasore influenced the dynamic phosphorylation status of Ser637 and Ser616 in Drp1, which converged with mitotic kinases (Cdk1, Plk1, Aurora A) and centrosome-associated proteins to significantly accelerate mitotic defects. Moreover, our data also indicated that evoking mito-Drp1-Ser637 by protein kinase A (PKA) rather than Drp1-Ser616 by Cdk1/Cyclin B resulted in mitochondrial fission via the PINK1/Parkin pathway to promote more efficient mitophagy and simultaneously caused multipolar spindles. Collectively, this study is the first to uncover that mito-Drp1-Ser637 by PKA, but not Drp1-Ser616, drives mitophagy to exert multipolar spindles formation during M-phase.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dinaminas/metabolismo , Dinámicas Mitocondriales , Mitofagia , Mitosis , Proteínas Quinasas/metabolismo , Huso Acromático/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Antimicina A/farmacología , Aurora Quinasa A/metabolismo , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Transporte de Electrón/efectos de los fármacos , Células HeLa , Humanos , Hidrazonas/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Estrés Oxidativo , Fosforilación , Fosfoserina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Quinazolinonas/metabolismo , Rotenona/farmacología , Quinasa Tipo Polo 1
14.
Life (Basel) ; 11(5)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069945

RESUMEN

Therapeutic resistance in recurrent glioblastoma multiforme (GBM) after concurrent chemoradiotherapy (CCRT) is a challenging issue. Although standard fractionated radiation is essential to treat GBM, it has led to local recurrence along with therapy-resistant cells in the ionizing radiation (IR) field. Lines of evidence showed cancer stem cells (CSCs) play a vital role in therapy resistance in many cancer types, including GBM. However, the molecular mechanism is poorly understood. Here, we proposed that autophagy could be involved in GSC induction for radioresistance. In a clinical setting, patients who received radiation/chemotherapy had higher LC3II expression and showed poor overall survival compared with those with low LC3 II. In a cell model, U87MG and GBM8401 expressed high level of stemness markers CD133, CD44, Nestin, and autophagy marker P62/LC3II after receiving standard fractionated IR. Furthermore, Wnt/ß-catenin proved to be a potential pathway and related to P62 by using proteasome inhibitor (MG132). Moreover, pharmacological inhibition of autophagy with BAF and CQ inhibit GSC cell growth by impairing autophagy flux as demonstrated by decrease Nestin, CD133, and SOX-2 levels. In conclusion, we demonstrated that fractionated IR could induce GSCs with the stemness phenotype by P62-mediated autophagy through the Wnt/ß-catenin for radioresistance. This study offers a new therapeutic strategy for targeting GBM in the future.

15.
Cell Death Discov ; 7(1): 275, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34608124

RESUMEN

Apoptosis induced by doxorubicin, bortezomib, or paclitaxel, targeting DNA, 26S proteasome, and microtubules respectively, was assessed in two osteosarcoma cells, p53 wild-type U2OS and p53-null MG63 cells. Doxorubicin-induced apoptosis only occurred in U2OS, not in MG63. In contrast, bortezomib and paclitaxel could drive U2OS or MG63 toward apoptosis effectively, suggesting that apoptosis induced by bortezomib or paclitaxel is p53-independent. The expressions of Bcl2 family members such as Bcl2, Bcl-xl, and Puma could be seen in U2OS and MG63 cells with or without doxorubicin, bortezomib, or paclitaxel treatment. In contrast, another member, Bim, only could be observed in U2OS, not in MG63, under the same conditions. Bim knockdown did not affect the doxorubicin-induced apoptosis in U2OS, suggested that a BH3-only protein other than Bim might participate in apoptosis induced by doxorubicin. Using a BH3-mimetic, ABT-263, to inhibit Bcl2 or Bcl-xl produced a limited apoptotic response in U2OS and MG63 cells, suggesting that this BH3-mimetic cannot activate the Bax/Bak pathway efficiently. Significantly, ABT-263 enhanced doxorubicin- and bortezomib-induced apoptosis synergistically in U2OS and MG63 cells. These results implied that the severe cellular stress caused by doxorubicin or bortezomib might be mediated through a dual process to control apoptosis. Respectively, doxorubicin or bortezomib activates a BH3-only protein in one way and corresponding unknown factors in another way to affect mitochondrial outer membrane permeability, resulting in apoptosis. The combination of doxorubicin with ABT-263 could produce synergistic apoptosis in MG63 cells, which lack p53, suggesting that p53 has no role in doxorubicin-induced apoptosis in osteosarcoma. In addition, ABT-263 enhanced paclitaxel to induce moderate levels of apoptosis.

16.
Oper Neurosurg (Hagerstown) ; 20(6): 535-540, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33550407

RESUMEN

BACKGROUND: Spine fusion surgery in osteoporosis remains controversial because it is related to a high incidence of osteoporosis-related complications, such as cage nonfusion, pedicle screw loosening, and new vertebral compression fractures (VCFs). OBJECTIVE: To treat 2-level degenerative lumbar disease in osteoporosis patients as an effective and safe surgical treatment for long-term results using minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF). METHODS: We retrospectively assessed 12 patients with osteoporosis who underwent MIS-TLIF on L4 and L5 between 2011 and 2012 to assess the clinical and radiographic results for 2-level lumbar degenerative spine disease. All patients were followed-up for at least 2 yr after surgery and assessed by using X-ray. Basic patient data and clinical and radiological outcomes were collected and analyzed. RESULTS: Of all 12 patients, 11/12 (91.6%) and 1/12 (8.3%) demonstrated cage fusion and cage subsidence, respectively. Pedicle screw loosening was found in 1/12 (8.3%) patients. The P-values calculated using the F-test for changes in the vertebral body height pre- and postoperation in L3, L4, and L5 were .69, .87, and .39, respectively. The data revealed no significant variants of new VCFs. CONCLUSION: MIS-TLIF provided a high cage fusion rate and low pedicle screw loosening rate in patients with osteoporosis with 2-level degenerative spine disease. Furthermore, no new VCFs were found in long-term follow-up. The clinical outcomes also demonstrated no significant difference compared with traditional open spine fusion surgery. Therefore, MIS-TLIF could be considered an effective and safe surgical treatment modality for 2-level degenerative spine disease in osteoporosis.


Asunto(s)
Fracturas por Compresión , Osteoporosis , Fracturas de la Columna Vertebral , Fusión Vertebral , Humanos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Procedimientos Quirúrgicos Mínimamente Invasivos , Estudios Retrospectivos
17.
Am J Chin Med ; 37(4): 815-28, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19655417

RESUMEN

The present study aimed to investigate the antioxidant and antiradical activities of Wu Ling Shen, a popular medicinal fungus (Xylaria nigripes) used in traditional Chinese medicine preparations. Two different X. nigripes materials, the cultivated X. nigripes mycelia (XN) and a commercial X. nigripes product (XNP), were used to prepare the aqueous (XN-H vs. XNP-H) and ethanol (XN-E vs. XNP-E) extracts for this study. Polyphenol and total polysaccharide contents of these extracts were also examined. Results showed that extracts of XN possessed stronger antioxidant and antiradical activities than XNP in all tested model systems. However, all extracts exhibited a weak activity in metal chelation and reducing power. Total antioxidant activity of XN extracts (IC50 6.20 microg/ml for XN-H and 5.41 microg/ml for XN-E), but not XNP extracts (IC50 128.13 microg/ml for XNP-H and 96.16 microg/ml for XNP-E), was more potent than Trolox (IC50 19.64 microg/ml) and vitamin C (IC50 26.39 microg/ml). XN-E (IC50 5.12 microg/ml) and XNP-E (IC50 8.89 microg/ml) possessed a relatively similar potency as that of positive controls (IC50 6.94 microg/ml for Trolox and 4.25 microg/ml for vitamin C) in the superoxide radical scavenging activity. Although the DPPH radical scavenging of XN extracts was weaker than that of Trolox and vitamin C, it was about eight times more potent than that of XNP extracts. In ABTS assay, both XN and XNP extracts exhibited a moderate ABTS radical scavenging activity. Among the different extracts, XN-E showed the highest total flavonoid (32.69 mg/g) and phenol (59.75 mg/g) contents, while XNP-H (7.50% w/w) had the highest level in total polysaccharide content. These results conclude that XN-E possesses the most potent antioxidant and antiradical activities, and that these activities could be derived from its high polyphenol content, but not the level of polysaccharides.


Asunto(s)
Antioxidantes/química , Ascomicetos/química , Factores Biológicos/química , Depuradores de Radicales Libres/química , Xylariales/química , Antioxidantes/farmacología , Factores Biológicos/farmacología , Compuestos de Bifenilo/química , Quelantes/química , Quelantes/farmacología , Flavonoides/análisis , Depuradores de Radicales Libres/farmacología , Micelio/química , Oxidación-Reducción/efectos de los fármacos , Fenol/análisis , Picratos/química , Polisacáridos/análisis , Superóxidos/química
18.
J Clin Med ; 8(10)2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640277

RESUMEN

Based on the protein kinase A (PKA)/GSK3ß interaction protein (GSKIP)/glycogen synthase kinase 3ß (GSK3ß) axis, we hypothesized that these might play a role in Tau phosphorylation. Here, we report that the phosphorylation of Tau Ser409 in SHSY5Y cells was increased by overexpression of GSKIP WT more than by PKA- and GSK3ß-binding defective mutants (V41/L45 and L130, respectively). We conducted in vitro assays of various kinase combinations to show that a combination of GSK3ß with PKA but not Ca2+/calmodulin-dependent protein kinase II (CaMK II) might provide a conformational shelter to harbor Tau Ser409. Cerebrospinal fluid (CSF) was evaluated to extend the clinical significance of Tau phosphorylation status in Alzheimer's disease (AD), neurological disorders (NAD), and mild cognitive impairment (MCI). We found higher levels of different PKA-Tau phosphorylation sites (Ser214, Ser262, and Ser409) in AD than in NAD, MCI, and normal groups. Moreover, we used the CRISPR/Cas9 system to produce amyloid precursor protein (APPWT/D678H) isogenic mutants. These results demonstrated an enhanced level of phosphorylation by PKA but not by the control. This study is the first to demonstrate a transient increase in phosphor-Tau caused by PKA, but not GSK3ß, in the CSF and induced pluripotent stem cells (iPSCs) of AD, implying that both GSKIP and GSK3ß function as anchoring proteins to strengthen the cAMP/PKA/Tau axis signaling during AD pathogenesis.

19.
Oncotarget ; 7(51): 85244-85258, 2016 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-27845894

RESUMEN

This study aims to identify new upregulated genes related to secretory or membranous proteins to help detect esophageal squamous cell carcinoma (ESCC). First, we performed microarray-based screening of esophageal tumors from both N-nitrosomethylbenzylamine- and arecoline-induced F344 rats and seventeen human ESCC specimens. Candidate genes were validated by quantitative PCR (qPCR) and immunohistochemical (IHC) staining of ESCC tissues. Among the paired cancer and adjacent normal tissues from 14 ESCC patients, 10 pairs (71.4%) had overexpression of ATP1A1 (ATPase Na+/K+ transporting alpha 1 polypeptide) by qPCR (P = 0.0052). ATP1A1 protein expression was re-confirmed by tissue arrays in 243 ESCC tissues and 126 adjacent normal tissues and by ELISA in 78 serum specimens of ESCC patients. ATP1A1 was 12.3 times (adjusted odds ratio=12.3, 95% CI = 7.2-21.0) more likely to be overexpressed in cancer tissues than in normal tissues. ATP1A1 expression was also correlated to tumor stage. Patients with higher serum ATP1A1 levels had a 2.9-fold (95% CI = 1.1-7.4) risk of late-stage disease (stages III-IV vs. I-II). Downregulation of ATP1A1 expression inhibited the migration and invasion ability of ESCC cell lines in vitro. We concluded that the overexpression of ATP1A1 is strongly associated with the presence and severity of ESCC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Neoplasias Esofágicas/diagnóstico , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Arecolina/toxicidad , Biomarcadores de Tumor/genética , Carcinogénesis , Carcinoma de Células Escamosas/inducido químicamente , Línea Celular Tumoral , Dimetilnitrosamina/análogos & derivados , Dimetilnitrosamina/toxicidad , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Análisis por Micromatrices , Ratas , ATPasa Intercambiadora de Sodio-Potasio/genética , Regulación hacia Arriba
20.
Food Chem ; 134(2): 920-5, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23107708

RESUMEN

The effects of tocotrienol-rich fraction (TRF), α-tocopherol (T) and α-tocopheryl acetate (TA) on lipopolysaccharide (LPS)-induced inflammatory responses in mouse peritoneal macrophages were examined. Results showed that at 5-30 µg/ml, all test compounds plus 1 µg/ml LPS exhibited no cytotoxic effects on macrophage cells. Compared with T and TA, TRF showed the strongest anti-inflammatory activity as demonstrated by its potency in inhibiting the LPS-induced nitric oxide (NO), prostaglandin E(2) (PGE(2)), and proinflammatory cytokine (TNF-α, IFN-γ, IL-1ß and IL-6) production. At 10 µg/ml, it significantly blocked the LPS induction of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, but has no effect on cyclooxygenase-1 (COX-1). Furthermore, TRF also showed a greater inhibition on the nuclear factor kappa B (NF-κB) expression than T and TA. These results suggest that TRF could be a better agent than T and TA for use in the prevention of chronic inflammatory diseases.


Asunto(s)
Antiinflamatorios/farmacología , Mediadores de Inflamación/inmunología , Macrófagos/inmunología , FN-kappa B/genética , Tocoferoles/farmacología , Tocotrienoles/farmacología , alfa-Tocoferol/farmacología , Animales , Células Cultivadas , Expresión Génica/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , FN-kappa B/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA