Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 24(15)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374878

RESUMEN

CA-170 is currently the only small-molecule modulator in clinical trials targeting PD-L1 and VISTA proteins - important negative checkpoint regulators of immune activation. The reported therapeutic results to some extent mimic those of FDA-approved monoclonal antibodies overcoming the limitations of the high production costs and adverse effects of the latter. However, no conclusive biophysical evidence proving the binding to hPD-L1 has ever been presented. Using well-known in vitro methods: NMR binding assay, HTRF and cell-based activation assays, we clearly show that there is no direct binding between CA-170 and PD-L1. To strengthen our reasoning, we performed control experiments on AUNP-12 - a 29-mer peptide, which is a precursor of CA-170. Positive controls consisted of the well-documented small-molecule PD-L1 inhibitors: BMS-1166 and peptide-57.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Inmunoterapia , Neoplasias/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Antígenos B7/antagonistas & inhibidores , Antígenos B7/química , Antígeno B7-H1/química , Humanos , Espectroscopía de Resonancia Magnética , Neoplasias/inmunología , Unión Proteica/efectos de los fármacos
2.
Angew Chem Int Ed Engl ; 56(44): 13732-13735, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-28881104

RESUMEN

Blockade of the immunoinhibitory PD-1/PD-L1 pathway using monoclonal antibodies has shown impressive results with durable clinical antitumor responses. Anti-PD-1 and anti-PD-L1 antibodies have now been approved for the treatment of a number of tumor types, whereas the development of small molecules targeting immune checkpoints lags far behind. We characterized two classes of macrocyclic-peptide inhibitors directed at the PD-1/PD-L1 pathway. We show that these macrocyclic compounds act by directly binding to PD-L1 and that they are capable of antagonizing PD-L1 signaling and, similarly to antibodies, can restore the function of T-cells. We also provide the crystal structures of two of these small-molecule inhibitors bound to PD-L1. The structures provide a rationale for the checkpoint inhibition by these small molecules, and a description of their small molecule/PD-L1 interfaces provides a blueprint for the design of small-molecule inhibitors of the PD-1/PD-L1 pathway.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Linfocitos T/efectos de los fármacos , Antígeno B7-H1/inmunología , Descubrimiento de Drogas , Humanos , Células Jurkat , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Simulación del Acoplamiento Molecular , Receptor de Muerte Celular Programada 1/inmunología , Mapas de Interacción de Proteínas/efectos de los fármacos , Linfocitos T/inmunología
3.
iScience ; 24(1): 101960, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33437940

RESUMEN

In the development of PD-L1-blocking therapeutics, it is essential to transfer initial in vitro findings into proper in vivo animal models. Classical immunocompetent mice are attractive due to high accessibility and low experimental costs. However, it is unknown whether inter-species differences in PD-L1 sequence and structure would allow for human-mouse cross applications. Here, we disclose the first structure of the mouse (m) PD-L1 and analyze its similarity to the human (h) PD-L1. We show that mPD-L1 interacts with hPD-1 and provides a negative signal toward activated Jurkat T cells. We also show major differences in druggability between the hPD-L1 and mPD-L1 using therapeutic antibodies, a macrocyclic peptide, and small molecules. Our study indicates that while the amino acid sequence is well conserved between the hPD-L1 and mPD-L1 and overall structures are almost identical, crucial differences determine the interaction with anti-PD-L1 agents, that cannot be easily predicted in silico.

4.
J Med Chem ; 63(19): 11271-11285, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32936638

RESUMEN

Immune checkpoint blockade is one of the most promising strategies of cancer immunotherapy. However, unlike classical targeted therapies, it is currently solely based on expensive monoclonal antibodies, which often inflict immune-related adverse events. Herein, we propose a novel small-molecule inhibitor targeted at the most clinically relevant immune checkpoint, PD-1/PD-L1. The compound is capable of disrupting the PD-1/PD-L1 complex by antagonizing PD-L1 and, therefore, restores activation of T cells similarly to the antibodies, while being cheap in production and possibly nonimmunogenic. The final compound is significantly smaller than others reported in the literature while being nontoxic to cells even at high concentrations. The scaffold was designed using a structure-activity relationship screening cascade based on a new antagonist-induced dissociation NMR assay, called the weak-AIDA-NMR. Weak-AIDA-NMR finds true inhibitors, as opposed to only binders to the target protein, in early steps of lead compound development, and this process makes it less time and cost consuming.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Bromo/química , Humanos , Inmunoterapia , Células Jurkat , Espectroscopía de Protones por Resonancia Magnética
5.
Cancers (Basel) ; 11(7)2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31331108

RESUMEN

The protein p53, known as the "Guardian of the Genome", plays an important role in maintaining DNA integrity, providing protection against cancer-promoting mutations. Dysfunction of p53 is observed in almost every cancer, with 50% of cases bearing loss-of-function mutations/deletions in the TP53 gene. In the remaining 50% of cases the overexpression of HDM2 (mouse double minute 2, human homolog) protein, which is a natural inhibitor of p53, is the most common way of keeping p53 inactive. Disruption of HDM2-p53 interaction with the use of HDM2 antagonists leads to the release of p53 and expression of its target genes, engaged in the induction of cell cycle arrest, DNA repair, senescence, and apoptosis. The induction of apoptosis, however, is restricted to only a handful of p53wt cells, and, generally, cancer cells treated with HDM2 antagonists are not efficiently eliminated. For this reason, HDM2 antagonists were tested in combinations with multiple other therapeutics in a search for synergy that would enhance the cancer eradication. This manuscript aims at reviewing the recent progress in developing strategies of combined cancer treatment with the use of HDM2 antagonists.

6.
Cancers (Basel) ; 10(11)2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30352966

RESUMEN

The protein p53 protects the organism against carcinogenic events by the induction of cell cycle arrest and DNA repair program upon DNA damage. Virtually all cancers inactivate p53 either by mutations/deletions of the TP53 gene or by boosting negative regulation of p53 activity. The overexpression of MDM2 protein is one of the most common mechanisms utilized by p53wt cancers to keep p53 inactive. Inhibition of MDM2 action by its antagonists has proved its anticancer potential in vitro and is now tested in clinical trials. However, the prolonged treatment of p53wt cells with MDM2 antagonists leads to the development of secondary resistance, as shown first for Nutlin-3a, and later for three other small molecules. In the present study, we show that secondary resistance occurs also after treatment of p53wt cells with idasanutlin (RG7388, RO5503781), which is the only MDM2 antagonist that has passed phase II and entered phase III clinical trials, so far. Idasanutlin strongly activates p53, as evidenced by the induction of p21 expression and potent cell cycle arrest in all the three cell lines tested, i.e., MCF-7, U-2 OS, and SJSA-1. Notably, apoptosis was induced only in SJSA-1 cells, while MCF-7 and U-2 OS cells were able to restore the proliferation upon the removal of idasanutlin. Moreover, idasanutlin-treated U-2 OS cells could be cultured for long time periods in the presence of the drug. This prolonged treatment led to the generation of p53-mutated resistant cell populations. This resistance was generated de novo, as evidenced by the utilization of monoclonal U-2 OS subpopulations. Thus, although idasanutlin presents much improved activities compared to its precursor, it displays the similar weaknesses, which are limited elimination of cancer cells and the generation of p53-mutated drug-resistant subpopulations.

7.
Oncotarget ; 8(42): 72167-72181, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-29069777

RESUMEN

Antibodies targeting the PD-1/PD-L1 immune checkpoint achieved spectacular success in anticancer therapy in the recent years. In contrast, no small molecules with cellular activity have been reported so far. Here we provide evidence that small molecules are capable of alleviating the PD-1/PD-L1 immune checkpoint-mediated exhaustion of Jurkat T-lymphocytes. The two optimized small-molecule inhibitors of the PD-1/PD-L1 interaction, BMS-1001 and BMS-1166, developed by Bristol-Myers Squibb, bind to human PD-L1 and block its interaction with PD-1, when tested on isolated proteins. The compounds present low toxicity towards tested cell lines and block the interaction of soluble PD-L1 with the cell surface-expressed PD-1. As a result, BMS-1001 and BMS-1166 alleviate the inhibitory effect of the soluble PD-L1 on the T-cell receptor-mediated activation of T-lymphocytes. Moreover, the compounds were effective in attenuating the inhibitory effect of the cell surface-associated PD-L1. We also determined the X-ray structures of the complexes of BMS-1001 and BMS-1166 with PD-L1, which revealed features that may be responsible for increased potency of the compounds compared to their predecessors. Further development may lead to the design of an anticancer therapy based on the orally delivered immune checkpoint inhibition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA