Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(16): E3205-E3214, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28373573

RESUMEN

Some strains of soil and marine bacteria have evolved intricate metabolic pathways for using environmentally derived aromatics as a carbon source. Many of these metabolic pathways go through intermediates such as vanillate, 3-O-methylgallate, and syringate. Demethylation of these compounds is essential for downstream aryl modification, ring opening, and subsequent assimilation of these compounds into the tricarboxylic acid (TCA) cycle, and, correspondingly, there are a variety of associated aryl demethylase systems that vary in complexity. Intriguingly, only a basic understanding of the least complex system, the tetrahydrofolate-dependent aryl demethylase LigM from Sphingomonas paucimobilis, a bacterial strain that metabolizes lignin-derived aromatics, was previously available. LigM-catalyzed demethylation enables further modification and ring opening of the single-ring aromatics vanillate and 3-O-methylgallate, which are common byproducts of biofuel production. Here, we characterize aryl O-demethylation by LigM and report its 1.81-Å crystal structure, revealing a unique demethylase fold and a canonical folate-binding domain. Structural homology and geometry optimization calculations enabled the identification of LigM's tetrahydrofolate-binding site and protein-folate interactions. Computationally guided mutagenesis and kinetic analyses allowed the identification of the enzyme's aryl-binding site location and determination of its unique, catalytic tyrosine-dependent reaction mechanism. This work defines LigM as a distinct demethylase, both structurally and functionally, and provides insight into demethylation and its reaction requirements. These results afford the mechanistic details required for efficient utilization of LigM as a tool for aryl O-demethylation and as a component of synthetic biology efforts to valorize previously underused aromatic compounds.


Asunto(s)
Oxidorreductasas O-Demetilantes/química , Oxidorreductasas O-Demetilantes/metabolismo , Sphingomonas/enzimología , Tirosina/metabolismo , Catálisis , Cristalografía por Rayos X , Cinética , Redes y Vías Metabólicas , Conformación Proteica
2.
Plant Cell ; 28(8): 1945-65, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27401545

RESUMEN

Chitin is a key component of fungal cell walls and a potent inducer of innate immune responses. Consequently, fungi may secrete chitin-binding lectins, such as the Cf-Avr4 effector protein from the tomato pathogen Cladosporium fulvum, to shield chitin from host-derived chitinases during infection. Homologs of Cf-Avr4 are found throughout Dothideomycetes, and despite their modest primary sequence identity, many are perceived by the cognate tomato immune receptor Cf-4. Here, we determined the x-ray crystal structure of Pf-Avr4 from the tomato pathogen Pseudocercospora fuligena, thus providing a three-dimensional model of an Avr4 effector protein. In addition, we explored structural, biochemical, and functional aspects of Pf-Avr4 and Cf-Avr4 to further define the biology of core effector proteins and outline a conceptual framework for their pleiotropic recognition by single immune receptors. We show that Cf-Avr4 and Pf-Avr4 share functional specificity in binding (GlcNAc)6 and in providing protection against plant- and microbial-derived chitinases, suggesting a broader role beyond deregulation of host immunity. Furthermore, structure-guided site-directed mutagenesis indicated that residues in Pf-Avr4 important for binding chitin do not directly influence recognition by Cf-4 and further suggested that the property of recognition is structurally separated or does not fully overlap with the virulence function of the effector.


Asunto(s)
Solanum lycopersicum/metabolismo , Quitina/metabolismo , Cladosporium/patogenicidad , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica
3.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 384-91, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24531472

RESUMEN

GtgE is an effector protein from Salmonella Typhimurium that modulates trafficking of the Salmonella-containing vacuole. It exerts its function by cleaving the Rab-family GTPases Rab29, Rab32 and Rab38, thereby preventing the delivery of antimicrobial factors to the bacteria-containing vacuole. Here, the crystal structure of GtgE at 1.65 Šresolution is presented, and structure-based mutagenesis and in vivo infection assays are used to identify its catalytic triad. A panel of cysteine protease inhibitors were examined and it was determined that N-ethylmaleimide, antipain and chymostatin inhibit GtgE activity in vitro. These findings provide the basis for the development of novel therapeutic strategies to combat Salmonella infections.


Asunto(s)
Proteínas Bacterianas/química , Salmonella typhimurium/química , Proteínas de Unión al GTP rab/química , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células COS , Dominio Catalítico , Chlorocebus aethiops , Cristalografía por Rayos X , Inhibidores de Cisteína Proteinasa/química , Escherichia coli/genética , Escherichia coli/metabolismo , Especificidad del Huésped , Interacciones Huésped-Patógeno , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Transporte de Proteínas , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/enzimología , Relación Estructura-Actividad , Vacuolas/metabolismo , Proteínas de Unión al GTP rab/metabolismo
4.
JCI Insight ; 8(17)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37681415

RESUMEN

A T50I substitution in the K-Ras interswitch domain causes Noonan syndrome and emerged as a third-site mutation that restored the in vivo transforming activity and constitutive MAPK pathway activation by an attenuated KrasG12D,E37G oncogene in a mouse leukemia model. Biochemical and crystallographic data suggested that K-RasT50I increases MAPK signal output through a non-GTPase mechanism, potentially by promoting asymmetric Ras:Ras interactions between T50 and E162. We generated a "switchable" system in which K-Ras mutant proteins expressed at physiologic levels supplant the fms like tyrosine kinase 3 (FLT3) dependency of MOLM-13 leukemia cells lacking endogenous KRAS and used this system to interrogate single or compound G12D, T50I, D154Q, and E162L mutations. These studies support a key role for the asymmetric lateral assembly of K-Ras in a plasma membrane-distal orientation that promotes the formation of active Ras:Raf complexes in a membrane-proximal conformation. Disease-causing mutations such as T50I are a valuable starting point for illuminating normal Ras function, elucidating mechanisms of disease, and identifying potential therapeutic opportunities for Rasopathy disorders and cancer.


Asunto(s)
Leucemia , Proteínas Proto-Oncogénicas p21(ras) , Animales , Ratones , Modelos Animales de Enfermedad , Células Germinativas , Mutación de Línea Germinal , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas ras
5.
Biochemistry ; 49(29): 6206-18, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20557110

RESUMEN

Heme-derived linear tetrapyrroles (phytobilins) in phycobiliproteins and phytochromes perform critical light-harvesting and light-sensing roles in oxygenic photosynthetic organisms. A key enzyme in their biogenesis, phycocyanobilin:ferredoxin oxidoreductase (PcyA), catalyzes the overall four-electron reduction of biliverdin IXalpha to phycocyanobilin--the common chromophore precursor for both classes of biliproteins. This interconversion occurs via semireduced bilin radical intermediates that are profoundly stabilized by selected mutations of two critical catalytic residues, Asp105 and His88. To understand the structural basis for this stabilization and to gain insight into the overall catalytic mechanism, we report the high-resolution crystal structures of substrate-loaded Asp105Asn and His88Gln mutants of Synechocystis sp. PCC 6803 PcyA in the initial oxidized and one-electron reduced radical states. Unlike wild-type PcyA, both mutants possess a bilin-interacting axial water molecule that is ejected from the active site upon formation of the enzyme-bound neutral radical complex. Structural studies of both mutants also show that the side chain of Glu76 is unfavorably located for D-ring vinyl reduction. On the basis of these structures and companion (15)N-(1)H long-range HMQC NMR analyses to assess the protonation state of histidine residues, we propose a new mechanistic scheme for PcyA-mediated reduction of both vinyl groups of biliverdin wherein an axial water molecule, which prematurely binds and ejects from both mutants upon one electron reduction, is required for catalytic turnover of the semireduced state.


Asunto(s)
Proteínas Bacterianas/química , Pigmentos Biliares/química , Oxidorreductasas/química , Ficobilinas/química , Ficocianina/química , Agua/química , Asparagina/genética , Proteínas Bacterianas/genética , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Histidina/genética , Mutación , Oxidorreductasas/genética , Conformación Proteica
6.
J Am Chem Soc ; 131(5): 1986-95, 2009 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-19159240

RESUMEN

The cyanobacterial enzyme phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the two-step four-electron reduction of biliverdin IXalpha to phycocyanobilin, the precursor of biliprotein chromophores found in phycobilisomes. It is known that catalysis proceeds via paramagnetic radical intermediates, but the structure of these intermediates and the transfer pathways for the four protons involved are not known. In this study, high-field electron paramagnetic resonance (EPR) spectroscopy of frozen solutions and single crystals of the one-electron reduced protein-substrate complex of two PcyA mutants D105N from the cyanobacteria Synechocystis sp. PCC6803 and Nostoc sp. PCC7120 are examined. Detailed analysis of Synechocystis D105N mutant spectra at 130 and 406 GHz reveals a biliverdin radical with a very narrow g tensor with principal values 2.00359(5), 2.00341(5), and 2.00218(5). Using density-functional theory (DFT) computations to explore the possible protonation states of the biliverdin radical, it is shown that this g tensor is consistent with a biliverdin radical where the carbonyl oxygen atoms on both the A and the D pyrrole rings are protonated. This experimentally confirms the reaction mechanism recently proposed (Tu, et al. Biochemistry 2007, 46, 1484).


Asunto(s)
Proteínas Bacterianas/química , Biliverdina/química , Oxidorreductasas/química , Proteínas Bacterianas/metabolismo , Biliverdina/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidorreductasas/metabolismo
7.
Cell Chem Biol ; 25(8): 974-983.e3, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-29805035

RESUMEN

In an age of ever-increasing biotechnological and industrial demand for new and specialized biocatalysts, rational protein engineering offers a direct approach to enzyme design and innovation. Heme peroxidases, as indispensable oxidative biocatalysts, provide a relatively mild alternative to the traditional harsh, and often toxic, chemical catalysts, and subsequently, have found widespread application throughout industry. However, the potential for these enzymes is far greater than their present use, as processes are currently restricted to the more stable, but less catalytically powerful, subset of peroxidases. Here we describe the structure-guided, rational engineering of a plant-fungal hybrid peroxidase built to overcome the application barrier of these high-reduction potential peroxidases. This engineered enzyme has the catalytic versatility and oxidative ability of a high-reduction potential versatile peroxidase, with enhanced temperature and pH tolerance similar to that of a highly stable plant peroxidase.


Asunto(s)
Peroxidasa/química , Peroxidasa/genética , Plantas/enzimología , Pleurotus/enzimología , Ingeniería de Proteínas/métodos , Biotecnología , Estabilidad de Enzimas , Escherichia coli/genética , Concentración de Iones de Hidrógeno , Modelos Moleculares , Oxidación-Reducción , Peroxidasa/metabolismo , Plantas/química , Plantas/genética , Plantas/metabolismo , Pleurotus/química , Pleurotus/genética , Pleurotus/metabolismo , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA