Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(25): e202117563, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35384198

RESUMEN

Peroxodicarbonates are of substantial interest as potentially powerful and sustainable oxidizers but have so far been accessible only in low concentrations with unsatisfactory energy efficiency. Concentrated (> 0.9 mol L-1 ) peroxodicarbonate solutions have now been made accessible by the electrolysis of aqueous K2 CO3 /Na2 CO3 /KHCO3 solutions at high current density of 3.33 A cm-2 in an efficiently cooled circular flow reactor equipped with a boron-doped diamond anode and a stainless-steel cathode. Their synthetic potential as platform oxidizers was clearly demonstrated in transformations including sulfoxidation, N-oxidation, and epoxidation.

2.
Chemistry ; 25(11): 2713-2716, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30638281

RESUMEN

A simple and selective electrochemical synthesis by dehydrogenative coupling of unprotected 2,6- or 2,5-substituted phenols to the desired 4,4'-biphenols is reported. Using electricity as the oxidizing reagent avoids pre-functionalization of the starting materials, since a selective activation of the substrates takes place. Without the necessity for metal-catalysts or the use of stoichiometric reagents it is an economic and environmentally friendly transformation. The elaborated electrochemical protocol leads to a broad variety of the desired 4,4'-biphenols in a very simplified manner compared to classical approaches. This is particular the case for the cross-coupled products.

3.
Org Lett ; 26(8): 1607-1611, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364789

RESUMEN

Electrochemically generated green platform oxidizers like peroxodicarbonate (PODIC) constitute a game-changing technology in terms of sustainable chemistry while serving as an alternative counterreaction in the electrochemical hydrogen evolution. Peroxodicarbonate avoids the storage and shipping of concentrated hydrogen peroxide solution. We herein disclose an efficient method for the N-oxidation of quinolines, pyridines, and complex tertiary amines. The use of phenoyloxy succinimide (POSI) is the decisive factor for obtaining N-oxides (28 examples) in isolated yields of up to 98%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA