Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurophysiol ; 131(4): 750-756, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38507295

RESUMEN

To generate a force, the brain activates muscles that act like springs to pull the arm toward a new equilibrium position. The equilibrium position (EP) is central to our understanding of the biological control of viscoelastic muscles. Although there is evidence of the EP during the control of limb posture, EPs have not been directly identified when the limb exerts a force against the environment. Here, we asked participants to apply a constant force in one of eight directions against a point-like constraint. This constraint was released abruptly to observe the final position to which the arm converged. Importantly, the same force magnitude was maintained while changing the arm's stiffness by modulating the strength of the hand's power grasp. The final position moved further away from the constraint as the arm became less stiff and was inversely proportional to the arm's stiffness, thereby confirming that the final position was the arm's EP. These results demonstrate how the EP changes with the arm's stiffness to produce a desired force in different directions.NEW & NOTEWORTHY According to numerous theories, the brain controls posture and movement by activating muscles that attract the limb toward a so-called equilibrium position, but the universality of this mechanism has not been shown for different motor behaviors. Here, we show that even when pushing or pulling against the environment, the brain achieves the desired force through an equilibrium position that lies beyond the physical constraint.


Asunto(s)
Brazo , Movimiento , Humanos , Brazo/fisiología , Movimiento/fisiología , Postura , Encéfalo , Fenómenos Biomecánicos
2.
Exp Brain Res ; 240(12): 3305-3314, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36318318

RESUMEN

Neural circuits connecting the cerebellum with the cerebral cortex are important for both motor and cognitive functions. Therefore, assessment of cerebellar function is clinically important for patients with various motor and cognitive dysfunctions. Cerebellum-dependent motor learning has been studied using various tasks. The most widely used tasks are visuomotor adaptation tasks, in which subjects are required to make movements in two dimensions. Studies using simpler tasks of one-dimensional movement, which are easier for patients with motor problems to perform, have suggested that anticipatory responses in these tasks are useful to evaluate cerebellum-dependent motor control or motor learning. In this study, we examined whether the motor learning process can be evaluated in a simple loading task. Using space interface device for artificial reality (SPIDAR), a constant downward force was loaded to subjects' hands in a predictable condition, and the vertical movement of the hand was recorded. The hand deflection from the initial position was displayed on a screen for visual feedback information. We examined effects of repeated loading task training (90 times) on hand movements, by analyzing a small upward movement just before loading (anticipatory response) and a large downward movement after loading in each trial. We found that the repeated training lowered the time constant of upward movement and reduced the amplitude and time-to-peak of downward movement. These training effects were maintained into the next day. Furthermore, we found that loading task training with eyes closed was also effective, which indicates that proprioceptive information is enough for improvement of performance.


Asunto(s)
Mano , Movimiento , Humanos , Movimiento/fisiología , Mano/fisiología , Propiocepción/fisiología , Retroalimentación Sensorial/fisiología , Extremidad Superior/fisiología , Desempeño Psicomotor/fisiología
3.
Sensors (Basel) ; 23(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36616877

RESUMEN

This study addresses time intervals during robot control that dominate user satisfaction and factors of robot movement that induce satisfaction. We designed a robot control system using electromyography signals. In each trial, participants were exposed to different experiences as the cutoff frequencies of a low-pass filter were changed. The participants attempted to grab a bottle by controlling a robot. They were asked to evaluate four indicators (stability, imitation, response time, and movement speed) and indicate their satisfaction at the end of each trial by completing a questionnaire. The electroencephalography signals of the participants were recorded while they controlled the robot and responded to the questionnaire. Two independent component clusters in the precuneus and postcentral gyrus were the most sensitive to subjective evaluations. For the moment that dominated satisfaction, we observed that brain activity exhibited significant differences in satisfaction not immediately after feeding an input but during the later stage. The other indicators exhibited independently significant patterns in event-related spectral perturbations. Comparing these indicators in a low-frequency band related to the satisfaction with imitation and movement speed, which had significant differences, revealed that imitation covered significant intervals in satisfaction. This implies that imitation was the most important contributing factor among the four indicators. Our results reveal that regardless of subjective satisfaction, objective performance evaluation might more fully reflect user satisfaction.


Asunto(s)
Robótica , Humanos , Electroencefalografía , Mano/fisiología , Movimiento/fisiología , Robótica/métodos , Extremidad Superior , Electromiografía
4.
Sensors (Basel) ; 21(3)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513728

RESUMEN

Improving ski-turn skills is of interest to both competitive and recreational skiers, but it is not easy to improve on one's own. Although studies have reported various methods of ski-turn skill evaluation, a simple method that can be used by oneself has not yet been established. In this study, we have proposed a comfortable method to assess ski-turn skills; this method enables skiers to easily understand the relationship between body control and ski motion. One expert skier and four intermediate skiers participated in this study. Small inertial measurement units (IMUs) and mobile plantar pressure distribution sensors were used to capture data while skiing, and three ski-turn features-ski motion, waist rotation, and how load is applied to the skis-as well as their symmetry, were assessed. The results showed that the motions of skiing and the waist in the expert skier were significantly larger than those in intermediate skiers. Additionally, we found that the expert skier only slightly used the heel to apply a load to the skis (heel load ratio: approximately 60%) and made more symmetrical turns than the intermediate skiers did. This study will provide a method for recreational skiers, in particular, to conveniently and quantitatively evaluate their ski-turn skills by themselves.


Asunto(s)
Esquí , Rendimiento Atlético , Humanos , Movimiento (Física)
5.
J Neurophysiol ; 123(6): 2180-2190, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32267198

RESUMEN

Muscle synergies are usually identified via dimensionality reduction techniques, such that the identified synergies reconstruct the muscle activity to an accuracy level defined heuristically, often set to 90% of the variance. Here, we question the assumption that the residual muscle activity not explained by the synergies is due to noise. We hypothesize instead that the residual activity is not entirely random and can influence the execution of motor tasks. Young healthy subjects performed an isometric reaching task in which the surface electromyography of 10 arm muscles was mapped onto a two-dimensional force used to control a cursor. Three to five synergies explained 90% of the variance in muscle activity. We altered the muscle-force mapping via "hard" and "easy" virtual surgeries. Whereas in both surgeries the forces associated with synergies spanned the same dimension of the virtual environment, the muscle-force mapping was as close as possible to the initial mapping in the easy surgery; in contrast, it was as far as possible in the hard surgery. This design maximized potential differences in reaching errors attributable to residual activity. Results show that the easy surgery produced smaller directional errors than the hard surgery. Additionally, simulations of surgeries constructed with 1 to 10 synergies show that the errors in the easy and hard surgeries differ significantly for up to 8 synergies, which explains 98% of the variance on average. Our study thus indicates the need for cautious interpretations of results derived from synergy extraction techniques based on heuristics with lenient accuracy levels.NEW & NOTEWORTHY The muscle synergy hypothesis posits that the central nervous system simplifies motor control by grouping muscles into modules. Current techniques use dimensionality reduction, such that the identified synergies reconstruct 90% of the muscle activity. We show that residual muscle activity following such identification can have a large systematic effect on movements, even when the number of synergies approaches the number of muscles. Current synergy extraction techniques must therefore be updated to identify true physiological synergies.


Asunto(s)
Brazo/fisiología , Fenómenos Biomecánicos/fisiología , Actividad Motora/fisiología , Músculo Esquelético/fisiología , Desempeño Psicomotor/fisiología , Adulto , Electromiografía , Femenino , Humanos , Contracción Isométrica/fisiología , Masculino , Adulto Joven
6.
Phys Rev Lett ; 125(17): 174301, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33156673

RESUMEN

This Letter provides a low-power method for chaos generation that is generally applicable to nonlinear micro- and nanoelectromechanical systems (MNEMS) resonators. The approach taken is independent of the material, scale, design, and actuation of the device in question; it simply assumes a good quality factor and a Duffing type nonlinearity, features that are commonplace to MNEMS resonators. The approach models the rotating-frame dynamics to analytically constrain the parameter space required for chaos generation. By leveraging these common properties of MNEMS devices, a period-doubling route to chaos is generated using smaller forcing than typically reported in the literature.

7.
Chaos ; 30(12): 123132, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33380047

RESUMEN

The generation of walking patterns is central to bio-inspired robotics and has been attained using methods encompassing diverse numerical as well as analog implementations. Here, we demonstrate the possibility of synthesizing viable gaits using a paradigmatic low-dimensional non-linear entity, namely, the Rössler system, as a dynamical unit. Through a minimalistic network wherein each instance is univocally associated with one leg, it is possible to readily reproduce the canonical gaits as well as generate new ones via changing the coupling scheme and the associated delays. Varying levels of irregularity can be introduced by rendering individual systems or the entire network chaotic. Moreover, through tailored mapping of the state variables to physical angles, adequate leg trajectories can be accessed directly from the coupled systems. The functionality of the resulting generator was confirmed in laboratory experiments by means of an instrumented six-legged ant-like robot. Owing to their simple form, the 18 coupled equations could be rapidly integrated on a bare-metal microcontroller, leading to the demonstration of real-time robot control navigating an arena using a brain-machine interface.


Asunto(s)
Marcha , Robótica , Animales , Insectos , Caminata
8.
Chaos ; 29(2): 021102, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30823716

RESUMEN

The entrainment between weakly coupled nonlinear oscillators, as well as between complex signals such as those representing physiological activity, is frequently assessed in terms of whether a stable relationship is detectable between the instantaneous phases extracted from the measured or simulated time-series via the analytic signal. Here, we demonstrate that adding a possibly complex constant value to this normally null-mean signal has a non-trivial warping effect. Among other consequences, this introduces a level of sensitivity to the amplitude fluctuations and average relative phase. By means of simulations of Rössler systems and experiments on single-transistor oscillator networks, it is shown that the resulting coherence measure may have an empirical value in improving the inference of the structural couplings from the dynamics. When tentatively applied to the electroencephalogram recorded while performing imaginary and real movements, this straightforward modification of the phase locking value substantially improved the classification accuracy. Hence, its possible practical relevance in brain-computer and brain-machine interfaces deserves consideration.

9.
Neuroimage ; 97: 53-61, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24769184

RESUMEN

There is a growing interest in how the brain transforms body part positioning in the extrinsic environment into an intrinsic coordinate frame during motor control. To explore the human brain areas representing intrinsic and extrinsic coordinate frames, this fMRI study examined neural representation of motor cortices while human participants performed isometric wrist flexions and extensions in different forearm postures, thereby applying the same wrist actions (representing the intrinsic coordinate frame) to different movement directions (representing the extrinsic coordinate frame). Using sparse logistic regression, critical voxels involving pattern information that specifically discriminates wrist action (flexion vs. extension) and movement direction (upward vs. downward) were identified within the primary motor and premotor cortices. Analyses of classifier weights further identified contributions of the primary motor cortex to the intrinsic coordinate frame and the ventral and dorsal premotor cortex and supplementary motor area proper to the extrinsic coordinate frame. These results are consistent with existing findings using non-human primates and demonstrate the distributed representations of independent coordinate frames in the human brain.


Asunto(s)
Corteza Motora/fisiología , Desempeño Psicomotor/fisiología , Muñeca/inervación , Muñeca/fisiología , Adulto , Vías Eferentes/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Movimiento/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Adulto Joven
10.
Neural Netw ; 170: 376-389, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029719

RESUMEN

An essential aspect of human motor learning is the formation of inverse models, which map desired actions to motor commands. Inverse models can be learned by adjusting parameters in neural circuits to minimize errors in the performance of motor tasks through gradient descent. However, the theory of gradient descent establishes limits on the learning speed. Specifically, the eigenvalues of the Hessian of the error surface around a minimum determine the maximum speed of learning in a task. Here, we use this theoretical framework to analyze the speed of learning in different inverse model learning architectures in a set of isometric arm-reaching tasks. We show theoretically that, in these tasks, the error surface and, thus the speed of learning, are determined by the shapes of the force manipulability ellipsoid of the arm and the distribution of targets in the task. In particular, rounder manipulability ellipsoids generate a rounder error surface, allowing for faster learning of the inverse model. Rounder target distributions have a similar effect. We tested these predictions experimentally in a quasi-isometric reaching task with a visuomotor transformation. The experimental results were consistent with our theoretical predictions. Furthermore, our analysis accounts for the speed of learning in previous experiments with incompatible and compatible virtual surgery tasks, and with visuomotor rotation tasks with different numbers of targets. By identifying aspects of a task that influence the speed of learning, our results provide theoretical principles for the design of motor tasks that allow for faster learning.


Asunto(s)
Brazo , Movimiento , Humanos , Aprendizaje , Rotación , Adaptación Fisiológica , Desempeño Psicomotor
11.
Ups J Med Sci ; 1292024.
Artículo en Inglés | MEDLINE | ID: mdl-38571888

RESUMEN

Background: The Swedish Universities Scales of Personality (SSP) is a personality measurement tool with a short test battery of high psychometric quality, previously not availiable in Japanese. Methods: We translated the SSP into Japanese and administered it to 103 Japanese nationals. For 11 of the 13 SSP scales in the Japanese version of the SSP (SSP-J11), the Cronbach's alpha ranged from 0.50 to 0.82 with good internal scale reliability. Results: A principal factor analysis replicated the previous work by identifying the same three principal dimensions of Neuroticism, Aggression, and Extraversion factors. Conclusion: The resulting three-factor SSP-J11 shows acceptable reliability and should provide informative insights about personality traits in research and clinical practice in a Japanese context.


Asunto(s)
Personalidad , Suecia , Universidades , Reproducibilidad de los Resultados , Japón , Encuestas y Cuestionarios
12.
Front Neurosci ; 18: 1305918, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686325

RESUMEN

Social activities are likely to cause effects or reactivity in the brains of the people involved in collaborative social situations. This study assesses a new method, Tigramite, for time domain analysis of directed causality between the prefrontal cortex (PFC) of persons in such situations. An experimental situation using hyperscanning EEG was applied while individuals led and followed each other in finger-tapping rhythms. This structured task has a long duration and a high likelihood of inter-brain causal reactions in the prefrontal cortices. Tigramite is a graph-based causal discovery method to identify directed causal relationships in observational time series. Tigramite was used to analyze directed causal connections within and between the PFC. Significantly directed causality within and between brains could be detected during the social interactions. This is the first empirical evidence the Tigramite can reveal inter- and intra-brain-directed causal effects in hyperscanning EEG time series. The findings are promising for further studies of causality in neural networks during social activities using Tigramite on EEG in the time domain.

13.
J Neurophysiol ; 109(8): 2145-60, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23324321

RESUMEN

To understand the mechanism of neural motor control, it is important to clarify how the central nervous system organizes the coordination of redundant muscles. Previous studies suggested that muscle activity for step-tracking wrist movements are optimized so as to reduce total effort or end-point variance under neural noise. However, since the muscle dynamics were assumed as a simple linear system, some characteristic patterns of experimental EMG were not seen in the simulated muscle activity of the previous studies. The biological muscle is known to have dynamic properties in which its elasticity and viscosity depend on activation level. The motor control system is supposed to consider the viscoelasticity of the muscles when generating motor command signals. In this study, we present a computational motor control model that can control a musculoskeletal system with nonlinear dynamics. We applied the model to step-tracking wrist movements actuated by five muscles with dynamic viscoelastic properties. To solve the motor redundancy, we designed the control model to generate motor commands that maximize end-point accuracy under signal-dependent noise, while minimizing the squared sum of them. Here, we demonstrate that the muscle activity simulated by our model exhibits spatiotemporal features of experimentally observed muscle activity of human and nonhuman primates. In addition, we show that the movement trajectories resulting from the simulated muscle activity resemble experimentally observed trajectories. These results suggest that, by utilizing inherent viscoelastic properties of the muscles, the neural system may optimize muscle activity to improve motor performance.


Asunto(s)
Elasticidad/fisiología , Modelos Biológicos , Movimiento , Músculo Esquelético/fisiología , Muñeca/fisiología , Animales , Fenómenos Biomecánicos , Humanos , Primates , Viscosidad
14.
Bioengineering (Basel) ; 10(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37370595

RESUMEN

Electroencephalogram (EEG) channel optimization can reduce redundant information and improve EEG decoding accuracy by selecting the most informative channels. This article aims to investigate the universality regarding EEG channel optimization in terms of how well the selected EEG channels can be generalized to different participants. In particular, this study proposes a sparse logistic regression (SLR)-based EEG channel optimization algorithm using a non-zero model parameter ranking method. The proposed channel optimization algorithm was evaluated in both individual analysis and group analysis using the raw EEG data, compared with the conventional channel selection method based on the correlation coefficients (CCS). The experimental results demonstrate that the SLR-based EEG channel optimization algorithm not only filters out most redundant channels (filters 75-96.9% of channels) with a 1.65-5.1% increase in decoding accuracy, but it can also achieve a satisfactory level of decoding accuracy in the group analysis by employing only a few (2-15) common EEG electrodes, even for different participants. The proposed channel optimization algorithm can realize better universality for EEG decoding, which can reduce the burden of EEG data acquisition and enhance the real-world application of EEG-based brain-computer interface (BCI).

15.
Sci Rep ; 13(1): 21499, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057361

RESUMEN

Unlike ballistic arm movements such as reaching, the contribution of depth information to the performance of manual tracking movements is unclear. Thus, to understand how the brain handles information, we investigated how a required movement along the depth axis would affect behavioral tracking performance, postulating that it would be affected by the amount of depth movement. We designed a visually guided planar tracking task that requires movement on three planes with different depths: a fronto-parallel plane called ROT (0), a sagittal plane called ROT (90), and a plane rotated by 45° with respect to the sagittal plane called ROT (45). Fifteen participants performed a circular manual tracking task under binocular and monocular visions in a three-dimensional (3D) virtual reality space. As a result, under binocular vision, ROT (90), which required the largest depth movement among the tasks, showed the greatest error in 3D. Similarly, the errors (deviation from the target path) on the depth axis revealed significant differences among the tasks. Under monocular vision, significant differences in errors were observed only on the lateral axis. Moreover, we observed that the errors in the lateral and depth axes were proportional to the required movement on these axes under binocular vision and confirmed that the required depth movement under binocular vision determined depth error independent of the other axes. This finding implies that the brain may independently process binocular vision information on each axis. Meanwhile, the required depth movement under monocular vision was independent of performance along the depth axis, indicating an intractable behavior. Our findings highlight the importance of handling depth movement, especially when a virtual reality situation, involving tracking tasks, is generated.


Asunto(s)
Desempeño Psicomotor , Realidad Virtual , Humanos , Movimiento , Visión Binocular , Encéfalo , Visión Monocular , Percepción de Profundidad
16.
Front Neurosci ; 17: 1213035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457015

RESUMEN

The Partial Least Square Regression (PLSR) method has shown admirable competence for predicting continuous variables from inter-correlated electrocorticography signals in the brain-computer interface. However, PLSR is essentially formulated with the least square criterion, thus, being considerably prone to the performance deterioration caused by the brain recording noises. To address this problem, this study aims to propose a new robust variant for PLSR. To this end, the maximum correntropy criterion (MCC) is utilized to propose a new robust implementation of PLSR, called Partial Maximum Correntropy Regression (PMCR). The half-quadratic optimization is utilized to calculate the robust projectors for the dimensionality reduction, and the regression coefficients are optimized by a fixed-point optimization method. The proposed PMCR is evaluated with a synthetic example and a public electrocorticography dataset under three performance indicators. For the synthetic example, PMCR realized better prediction results compared with the other existing methods. PMCR could also abstract valid information with a limited number of decomposition factors in a noisy regression scenario. For the electrocorticography dataset, PMCR achieved superior decoding performance in most cases, and also realized the minimal neurophysiological pattern deterioration with the interference of the noises. The experimental results demonstrate that, the proposed PMCR could outperform the existing methods in a noisy, inter-correlated, and high-dimensional decoding task. PMCR could alleviate the performance degradation caused by the adverse noises and ameliorate the electrocorticography decoding robustness for the brain-computer interface.

17.
IEEE Trans Biomed Eng ; 70(8): 2416-2429, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37093731

RESUMEN

OBJECTIVE: Recent studies have used sparse classifications to predict categorical variables from high-dimensional brain activity signals to expose human's mental states and intentions, selecting the relevant features automatically in the model training process. However, existing sparse classification models will likely be prone to the performance degradation which is caused by the noise inherent in the brain recordings. To address this issue, we aim to propose a new robust and sparse classification algorithm in this study. METHODS: To this end, we introduce the correntropy learning framework into the automatic relevance determination based sparse classification model, proposing a new correntropy-based robust sparse logistic regression algorithm. To demonstrate the superior brain activity decoding performance of the proposed algorithm, we evaluate it on a synthetic dataset, an electroencephalogram (EEG) dataset, and a functional magnetic resonance imaging (fMRI) dataset. RESULTS: The extensive experimental results confirm that not only the proposed method can achieve higher classification accuracy in a noisy and high-dimensional classification task, but also it would select those more informative features for the decoding tasks. CONCLUSION: Integrating the correntropy learning approach with the automatic relevance determination technique will significantly improve the robustness with respect to the noise, leading to more adequate robust sparse brain decoding algorithm. SIGNIFICANCE: It provides a more powerful approach in the real-world brain activity decoding and the brain-computer interfaces.


Asunto(s)
Interfaces Cerebro-Computador , Encéfalo , Humanos , Modelos Logísticos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Aprendizaje , Imagen por Resonancia Magnética/métodos , Algoritmos , Electroencefalografía
18.
Neuroimage ; 59(2): 1324-37, 2012 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-21945691

RESUMEN

The ability to reconstruct muscle activity time series from electroencephalography (EEG) may lead to drastic improvements in brain-machine interfaces (BMIs) by providing a means for realistic continuous reproduction of dexterous movements in human beings. However, it is considered difficult to isolate signals related to individual muscle activities from EEG because EEG sensors record a mixture of signals originating from many cortical regions. Here, we challenge this assumption by reconstructing agonist and antagonist muscle activities (i.e. filtered electromyography (EMG) signals) from EEG cortical currents estimated using a hierarchical Bayesian EEG inverse method. Results of 5 volunteer subjects performing isometric right wrist flexion and extension tasks showed that individual muscle activity time series, as well as muscle activities at different force levels, were well reconstructed using EEG cortical currents and with significantly higher accuracy than when directly reconstructing from EEG sensor signals. Moreover, spatial distribution of weight values for reconstruction models revealed that highly contributing cortical sources to flexion and extension tasks were mutually exclusive, even though they were mapped onto the same cortical region. These results suggest that EEG sensor signals were reasonably isolated into cortical currents using the applied method and provide the first evidence that agonist and antagonist muscle activity time series can be reconstructed using EEG cortical currents.


Asunto(s)
Algoritmos , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Potenciales Evocados Motores/fisiología , Contracción Isométrica/fisiología , Músculo Esquelético/fisiología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Articulación de la Muñeca/fisiología , Adulto Joven
19.
Front Neurosci ; 16: 867480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051649

RESUMEN

A technology that allows humans to interact with machines more directly and efficiently would be desirable. Research on brain-computer interfaces (BCIs) provides the possibility for computers to understand human thoughts in a straightforward manner thereby facilitating communication. As a branch of BCI research, motor imagery (MI) techniques analyze the brain signals and help people in many aspects such as rehabilitation, clinical applications, entertainment, and system controlling. In this study, an imagery experiment consisting of four kinds of right-hand movements (gripping, opening, pronation, and supination) was designed. Then a novel feature, namely, clustered feature was proposed based on the event-related spectral perturbation (ERSP) calculated from the EEG signal. Based on the selected features, two classical classifiers (support vector machine and linear discriminant classifier) were trained, achieving an acceptable accurate result (80%, on average).

20.
Front Hum Neurosci ; 16: 805452, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693543

RESUMEN

Muscle synergy analysis via surface electromyography (EMG) is useful to study muscle coordination in motor learning, clinical diagnosis, and neurorehabilitation. However, current methods to extract muscle synergies in the upper limb suffer from two major issues. First, the necessary normalization of EMG signals is performed via maximum voluntary contraction (MVC), which requires maximal isometric force production in each muscle. However, some individuals with motor impairments have difficulties producing maximal effort in the MVC task. In addition, the MVC is known to be highly unreliable, with widely different forces produced in repeated measures. Second, synergy extraction in the upper limb is typically performed with a multidirection reaching task. However, some participants with motor impairments cannot perform this task because it requires precise motor control. In this study, we proposed a new isometric rotating task that does not require precise motor control or large forces. In this task, participants maintain a cursor controlled by the arm end-point force on a target that rotates at a constant angular velocity at a designated force level. To relax constraints on motor control precision, the target is widened and blurred. To obtain a reference EMG value for normalization without requiring maximal effort, we estimated a linear relationship between joint torques and muscle activations. We assessed the reliability of joint torque normalization and synergy extraction in the rotating task in young neurotypical individuals. Compared with normalization with MVC, joint torque normalization allowed reliable EMG normalization at low force levels. In addition, the extraction of synergies was as reliable and more stable than with the multidirection reaching task. The proposed rotating task can, therefore, be used in future motor learning, clinical diagnosis, and neurorehabilitation studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA