Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 624(7992): 539-544, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38030731

RESUMEN

Entanglement is a distinguishing feature of quantum many-body systems, and uncovering the entanglement structure for large particle numbers in quantum simulation experiments is a fundamental challenge in quantum information science1. Here we perform experimental investigations of entanglement on the basis of the entanglement Hamiltonian (EH)2 as an effective description of the reduced density operator for large subsystems. We prepare ground and excited states of a one-dimensional XXZ Heisenberg chain on a 51-ion programmable quantum simulator3 and perform sample-efficient 'learning' of the EH for subsystems of up to 20 lattice sites4. Our experiments provide compelling evidence for a local structure of the EH. To our knowledge, this observation marks the first instance of confirming the fundamental predictions of quantum field theory by Bisognano and Wichmann5,6, adapted to lattice models that represent correlated quantum matter. The reduced state takes the form of a Gibbs ensemble, with a spatially varying temperature profile as a signature of entanglement2. Our results also show the transition from area- to volume-law scaling7 of von Neumann entanglement entropies from ground to excited states. As we venture towards achieving quantum advantage, we anticipate that our findings and methods have wide-ranging applicability to revealing and understanding entanglement in many-body problems with local interactions including higher spatial dimensions.

2.
Nature ; 607(7920): 667-676, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35896643

RESUMEN

The development of quantum computing across several technologies and platforms has reached the point of having an advantage over classical computers for an artificial problem, a point known as 'quantum advantage'. As a next step along the development of this technology, it is now important to discuss 'practical quantum advantage', the point at which quantum devices will solve problems of practical interest that are not tractable for traditional supercomputers. Many of the most promising short-term applications of quantum computers fall under the umbrella of quantum simulation: modelling the quantum properties of microscopic particles that are directly relevant to modern materials science, high-energy physics and quantum chemistry. This would impact several important real-world applications, such as developing materials for batteries, industrial catalysis or nitrogen fixing. Much as aerodynamics can be studied either through simulations on a digital computer or in a wind tunnel, quantum simulation can be performed not only on future fault-tolerant digital quantum computers but also already today through special-purpose analogue quantum simulators. Here we overview the state of the art and future perspectives for quantum simulation, arguing that a first practical quantum advantage already exists in the case of specialized applications of analogue devices, and that fully digital devices open a full range of applications but require further development of fault-tolerant hardware. Hybrid digital-analogue devices that exist today already promise substantial flexibility in near-term applications.

3.
Phys Rev Lett ; 127(17): 170501, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34739272

RESUMEN

Learning the structure of the entanglement Hamiltonian (EH) is central to characterizing quantum many-body states in analog quantum simulation. We describe a protocol where spatial deformations of the many-body Hamiltonian, physically realized on the quantum device, serve as an efficient variational ansatz for a local EH. Optimal variational parameters are determined in a feedback loop, involving quench dynamics with the deformed Hamiltonian as a quantum processing step, and classical optimization. We simulate the protocol for the ground state of Fermi-Hubbard models in quasi-1D geometries, finding excellent agreement of the EH with Bisognano-Wichmann predictions. Subsequent on-device spectroscopy enables a direct measurement of the entanglement spectrum, which we illustrate for a Fermi Hubbard model in a topological phase.

4.
Phys Rev Lett ; 125(20): 200501, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33258654

RESUMEN

We propose a method for detecting bipartite entanglement in a many-body mixed state based on estimating moments of the partially transposed density matrix. The estimates are obtained by performing local random measurements on the state, followed by postprocessing using the classical shadows framework. Our method can be applied to any quantum system with single-qubit control. We provide a detailed analysis of the required number of experimental runs, and demonstrate the protocol using existing experimental data [Brydges et al., Science 364, 260 (2019)SCIEAS0036-807510.1126/science.aau4963].

5.
Phys Rev Lett ; 124(1): 010504, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31976701

RESUMEN

We describe a protocol for cross-platform verification of quantum simulators and quantum computers. We show how to measure directly the overlap Tr[ρ_{1}ρ_{2}] and the purities Tr[ρ_{1,2}^{2}], and thus a fidelity of two, possibly mixed, quantum states ρ_{1} and ρ_{2} prepared in separate experimental platforms. We require only local measurements in randomized product bases, which are communicated classically. As a proof of principle, we present the measurement of experiment-theory fidelities for entangled 10-qubit quantum states in a trapped ion quantum simulator.

6.
Phys Rev Lett ; 123(26): 260505, 2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31951449

RESUMEN

Arrays of atoms trapped in optical tweezers combine features of programmable analog quantum simulators with atomic quantum sensors. Here we propose variational quantum algorithms, tailored for tweezer arrays as programmable quantum sensors, capable of generating entangled states on demand for precision metrology. The scheme is designed to generate metrological enhancement by optimizing it in a feedback loop on the quantum device itself, thus preparing the best entangled states given the available quantum resources. We apply our ideas to the generation of spin-squeezed states on Sr atom tweezer arrays, where finite-range interactions are generated through Rydberg dressing. The complexity of experimental variational optimization of our quantum circuits is expected to scale favorably with system size. We numerically show our approach to be robust to noise, and surpassing known protocols.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA