RESUMEN
LL37 alone and in complex with self-DNA triggers inflammatory responses in myeloid cells and plays a crucial role in the development of systemic autoimmune diseases, like psoriasis and systemic lupus erythematosus. We demonstrated that LL37/self-DNA complexes induce long-term metabolic and epigenetic changes in monocytes, enhancing their responsiveness to subsequent stimuli. Monocytes trained with LL37/self-DNA complexes and those derived from psoriatic patients exhibited heightened glycolytic and oxidative phosphorylation rates, elevated release of proinflammatory cytokines, and affected naïve CD4+ T cells. Additionally, KDM6A/B, a demethylase of lysine 27 on histone 3, was upregulated in psoriatic monocytes and monocytes treated with LL37/self-DNA complexes. Inhibition of KDM6A/B reversed the trained immune phenotype by reducing proinflammatory cytokine production, metabolic activity, and the induction of IL-17-producing T cells by LL37/self-DNA-treated monocytes. Our findings highlight the role of LL37/self-DNA-induced innate immune memory in psoriasis pathogenesis, uncovering its impact on monocyte and T cell dynamics.
Asunto(s)
Péptidos Catiónicos Antimicrobianos , Catelicidinas , ADN , Monocitos , Psoriasis , Humanos , Monocitos/inmunología , Monocitos/metabolismo , Psoriasis/inmunología , ADN/inmunología , ADN/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Linfocitos T CD4-Positivos/inmunología , Reprogramación Celular/inmunología , Citocinas/metabolismo , Citocinas/inmunología , Inmunidad Innata , Masculino , Epigénesis Genética , Femenino , Memoria Inmunológica , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Interleucina-17/metabolismo , Interleucina-17/inmunología , Células CultivadasRESUMEN
Tail-anchored (TA) proteins are anchored to their corresponding membrane via a single transmembrane segment (TMS) at their C-terminus. In yeast, the targeting of TA proteins to the endoplasmic reticulum (ER) can be mediated by the guided entry of TA proteins (GET) pathway, whereas it is not yet clear how mitochondrial TA proteins are targeted to their destination. It has been widely observed that some mitochondrial outer membrane (MOM) proteins are mistargeted to the ER when overexpressed or when their targeting signal is masked. However, the mechanism of this erroneous sorting is currently unknown. In this study, we demonstrate the involvement of the GET machinery in the mistargeting of suboptimal MOM proteins to the ER. These findings suggest that the GET machinery can, in principle, recognize and guide mitochondrial and non-canonical TA proteins. Hence, under normal conditions, an active mitochondrial targeting pathway must exist that dominates the kinetic competition against other pathways.
Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Adenosina Trifosfatasas/metabolismo , Retículo Endoplásmico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Retículo Endoplásmico/genética , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Membranas Mitocondriales/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
PURPOSE: Histone variant H2A.J is associated with premature senescence after ionizing radiation (IR) and modulates senescence-associated secretory phenotype (SASP). Using constitutive H2A.J knock-out mice, the role of H2A.J was investigated in radiation dermatitis. METHODS AND MATERIALS: H2A.J wild-type (WT) and knock-out (KO) mice were exposed to moderate or high IR doses (≤20 Gy, skinfold IR). Radiation-induced skin reactions were investigated up to 2 weeks post-IR at macroscopic and microscopic levels. H2A.J and other senescence markers, as well as DNA damage and proliferation markers, were studied by immunohistochemistry, immunofluorescence, and electron microscopy. After high-dose IR, protein-coding transcriptomes were analyzed by RNA sequencing, immune cell infiltration by flow cytometry, and gene expression by reverse transcription polymerase chain reaction in (non-) irradiated WT versus KO skin. RESULTS: In WT skin, epidermal keratinocytes showed time- and dose-dependent H2A.J accumulation after IR exposure. Unexpectedly, stronger inflammatory reactions with increased epidermal thickness and progressive hair follicle loss were observed in irradiated KO versus WT skin. Clearly more radiation-induced senescence was observed in keratinocyte populations of KO skin after moderate and high doses, with hair follicle stem cells being particularly badly damaged, leading to follicle atrophy. After high-dose IR, transcriptomic analysis revealed enhanced senescence-associated signatures in irradiated KO skin, with intensified release of SASP factors. Flow cytometric analysis indicated increased immune cell infiltration in both WT and KO skin; however, specific chemokine-mediated signaling in irradiated KO skin led to more neutrophil recruitment, thereby aggravating radiation toxicities. Increased skin damage in irradiated KO skin led to hyperproliferation, abnormal differentiation, and cornification of keratinocytes, accompanied by increased upregulation of transcription-factor JunB. CONCLUSIONS: Lack of radiation-induced H2A.J expression in keratinocytes is associated with increased senescence induction, modulation of SASP expression, and exacerbated inflammatory skin reactions. Hence, epigenetic H2A.J-mediated gene expression in response to IR regulates keratinocyte immune functions and plays an essential role in balancing the inflammatory response during radiation dermatitis.
Asunto(s)
Histonas , Radiodermatitis , Animales , Ratones , Histonas/metabolismo , Piel/efectos de la radiación , Queratinocitos/fisiología , Radiación Ionizante , Senescencia Celular/efectos de la radiaciónRESUMEN
Plaque psoriasis is an autoinflammatory and autoimmune skin disease, affecting 1-3% of the population worldwide. Previously, high levels of IL-36 family cytokines were found in psoriatic skin lesions, thereby contributing to keratinocyte hyperproliferation and infiltration of immune cells such as neutrophils. While treatment with anti-IL36 receptor (IL36R) antibodies was recently approved for generalized pustular psoriasis (GPP), it remains unclear, if targeting the IL36R might also inhibit plaque psoriasis. Here we show that antibody-mediated inhibition of IL36R is sufficient to suppress imiquimod-induced psoriasis-like skin inflammation and represses the disease's development in a model that depends on IL-17A overexpression in the skin. Importantly, treatment with anti-IL36R antibodies inhibited skin inflammation and attenuated psoriasis-associated, systemic inflammation. This is possibly due to a widespread effect of IL36R inhibition, which not only suppresses pro-inflammatory gene expression in keratinocytes, but also the activation of other immune cells such as T-cells or dendritic cells. In conclusion, we propose that inhibition of the IL-36 signaling pathway might constitute an attractive, alternative approach for treating IL-17A-driven psoriasis and psoriasis-linked comorbidities.
Asunto(s)
Dermatitis , Psoriasis , Humanos , Interleucina-17/metabolismo , Piel , Dermatitis/patología , Transducción de Señal , Inflamación/patologíaRESUMEN
Biogenesis of mitochondrial outer membrane proteins involves their integration into the lipid bilayer. Among these proteins are those that form a single-span topology, but our understanding of their biogenesis is scarce. In this study, we found that the MIM complex is required for the membrane insertion of some single-span proteins. However, other such proteins integrate into the membrane in a MIM-independent manner. Moreover, the biogenesis of the studied proteins was dependent to a variable degree on the TOM receptors Tom20 and Tom70. We found that Atg32 C-terminal domain mediates dependency on Tom20, whereas the cytosolic domains of Atg32 and Gem1 facilitate MIM involvement. Collectively, our findings (1) enlarge the repertoire of MIM substrates to include also tail-anchored proteins, (2) provide new mechanistic insights to the functions of the MIM complex and TOM import receptors, and (3) demonstrate that the biogenesis of MOM single-span proteins shows variable dependence on import factors.
RESUMEN
Assembly and/or insertion of a subset of mitochondrial outer membrane (MOM) proteins, including subunits of the main MOM translocase, require the fungi-specific Mim1/Mim2 complex. So far it was unclear which proteins accomplish this task in other eukaryotes. Here, we show by reciprocal complementation that the MOM protein pATOM36 of trypanosomes is a functional analogue of yeast Mim1/Mim2 complex, even though these proteins show neither sequence nor topological similarity. Expression of pATOM36 rescues almost all growth, mitochondrial biogenesis, and morphology defects in yeast cells lacking Mim1 and/or Mim2. Conversely, co-expression of Mim1 and Mim2 restores the assembly and/or insertion defects of MOM proteins in trypanosomes ablated for pATOM36. Mim1/Mim2 and pATOM36 form native-like complexes when heterologously expressed, indicating that additional proteins are not part of these structures. Our findings indicate that Mim1/Mim2 and pATOM36 are the products of convergent evolution and arose only after the ancestors of fungi and trypanosomatids diverged.