Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Plant Dis ; 106(2): 364-372, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34282926

RESUMEN

Fusarium head blight (FHB) is a devastating disease of wheat and barley. In the U.S.A., a significant long-term investment in breeding FHB-resistant cultivars began after the 1990s. However, to this date, no study has been performed to understand and monitor the rate of genetic progress in FHB resistance as a result of this investment. Using 20 years of data (1998 to 2018) from the Northern Uniform and Preliminarily Northern Uniform winter wheat scab nurseries that consisted of 1,068 genotypes originating from nine different institutions, we studied the genetic trends in FHB resistance within the northern soft red winter wheat growing region using mixed model analyses. For the FHB resistance traits incidence, severity, Fusarium-damaged kernels, and deoxynivalenol content, the rate of genetic gain in disease resistance was estimated to be 0.30 ± 0.1, 0.60 ± 0.09, and 0.37 ± 0.11 points per year, and 0.11 ± 0.05 parts per million per year, respectively. Among the five FHB-resistance quantitative trait loci assayed for test entries from 2012 to 2018, the frequencies of favorable alleles from Fhb 2DL Wuhan1 W14, Fhb Ernie 3Bc, and Fhb 5A Ning7840 were close to zero across the years. The frequency of the favorable at Fhb1 and Fhb 5A Ernie ranged from 0.08 to 0.33 and 0.06 to 0.20, respectively, across years, and there was no trend in changes in allele frequencies over years. Overall, this study showed that substantial genetic progress has been made toward improving resistance to FHB. It is apparent that today's investment in public wheat breeding for FHB resistance is achieving results and will continue to play a vital role in reducing FHB levels in growers' fields.


Asunto(s)
Fusarium , Cruzamiento , Fusarium/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Triticum/genética
2.
Plant Dis ; 102(6): 1141-1147, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30673442

RESUMEN

Management of Fusarium graminearum-associated mycotoxins in wheat grain has been extensively evaluated, but little is known about management of mycotoxins in straw. Two research trials were conducted at four locations from 2011 to 2014. The objective of the first trial was to determine the efficacy of fungicides, and the objective of the second trial was to evaluate the use of integrated disease management strategies, for the control of Fusarium head blight (FHB) and reducing the concentration of the Fusarium mycotoxins deoxynivalenol, 3-acetyl-deoxynivalenol, and 15-acetyl-deoxynivalenol in straw. In the first trial, it was determined that demethylation inhibitor (DMI) fungicides did not offer significant (P ≤ 0.05) reductions of mycotoxin concentrations in the straw compared with a no-fungicide control treatment, but significant (P ≤ 0.05) reductions in mycotoxin concentration were observed in the control when compared with treatments with the application of quinone outside inhibitor (QoI)-containing fungicides. In the second trial, mycotoxin concentrations in the straw were significantly (P ≤ 0.05) reduced in the moderately resistant cultivar compared with the susceptible cultivar, but were not affected by the use of a fungicide. The practices typically used to manage Fusarium mycotoxins in wheat grain, especially the selection of resistant cultivars and not using a QoI fungicide, may be an effective means to reduce mycotoxin concentrations in the straw.


Asunto(s)
Fusarium/metabolismo , Micotoxinas/química , Enfermedades de las Plantas/microbiología , Tallos de la Planta/microbiología , Triticum/microbiología , Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Micotoxinas/metabolismo
3.
Plant Dis ; 102(12): 2539-2544, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30252626

RESUMEN

Effective control of Fusarium-mycotoxin accumulation in grain affected by Fusarium head blight (FHB) (caused by Fusarium graminearum) begins with selecting moderately resistant wheat cultivars; however, little is known about how this resistance affects mycotoxin levels in the stem. A study was conducted from 2011 to 2014 in a mist-irrigated FHB nursery in Urbana, IL to determine whether the FHB resistance class of a cultivar (very susceptible, susceptible, moderately susceptible, and moderately resistant) affects the concentration of Fusarium mycotoxins in the stem. FHB incidence, FHB severity, and Fusarium-damaged kernel ratings were collected and used to calculate FHB index; incidence, severity, and kernel damage (ISK) index; and deoxynivalenol (DON), incidence, severity, and kernel damage (DISK) index. Grain was assayed for levels of DON, and the bottom 25 cm of plant stems was collected from each plot and assayed for DON, 3-acetyl-deoxynivalenol (3ADON), and 15-acetyl-deoxynivalenol (15ADON). Significant differences in DON concentration in the grain were detected among cultivars (P = 0.0001) and for the concentration of all DON (P = 0.003), 3ADON (P = 0.03), and 15ADON (P < 0.0001) in the stem. Significant differences among resistance classes were observed for FHB index value (P < 0.0001), ISK index (P = 0.006), and DISK index (P = 0.004). In all years of this study, the concentration of DON in the grain and the concentrations of all mycotoxins in the stem were consistently lower in the moderately resistant cultivars. All three indices were poor indicators of mycotoxin concentrations in the stem. Overall, the selection of a moderately resistant cultivar provides effective control of DON accumulation in the grain and mycotoxin accumulation in the stem.


Asunto(s)
Fusarium/fisiología , Micotoxinas/metabolismo , Enfermedades de las Plantas/inmunología , Tricotecenos/metabolismo , Triticum/genética , Resistencia a la Enfermedad , Grano Comestible/química , Grano Comestible/genética , Grano Comestible/microbiología , Enfermedades de las Plantas/microbiología , Tallos de la Planta/química , Tallos de la Planta/genética , Tallos de la Planta/microbiología , Triticum/química , Triticum/inmunología , Triticum/microbiología
4.
Plant Genome ; 15(1): e20188, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35043582

RESUMEN

Multi-trait genomic prediction (MTGP) can improve selection accuracy for economically valuable 'primary' traits by incorporating data on correlated secondary traits. Resistance to Fusarium head blight (FHB), a fungal disease of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.), is evaluated using four genetically correlated traits: incidence (INC), severity (SEV), Fusarium damaged kernels (FDK), and deoxynivalenol content (DON). Both FDK and DON are primary traits; DON evaluation is expensive and usually requires several months for wheat breeders to get results from service laboratories performing the evaluations. We evaluated MTGP for DON using three soft red winter wheat breeding datasets: two diversity panels from the University of Illinois (IL) and Purdue University (PU) and a dataset consisting of 2019-2020 University of Illinois breeding cohorts. For DON, relative to single-trait (ST) genomic prediction, MTGP including phenotypic data for secondary traits on both validation and training sets, resulted in 23.4 and 10.6% higher predictive abilities in IL and PU panels, respectively. The MTGP models were advantageous only when secondary traits were included in both training and validation sets. In addition, MTGP models were more accurate than ST models only when FDK was included, and once FDK was included in the model, adding additional traits hardly improved accuracy. Evaluation of MTGP models across testing cohorts indicated that MTGP could increase accuracy by more than twofold in the early stages. Overall, we show that MTGP can increase selection accuracy for resistance to DON accumulation in wheat provided FDK is evaluated on the selection candidates.


Asunto(s)
Fusarium , Hordeum , Humanos , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Tricotecenos , Triticum/genética , Triticum/microbiología
5.
BMC Genomics ; 10: 39, 2009 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-19159465

RESUMEN

BACKGROUND: Genomic discovery in oat and its application to oat improvement have been hindered by a lack of genetic markers common to different genetic maps, and by the difficulty of conducting whole-genome analysis using high-throughput markers. This study was intended to develop, characterize, and apply a large set of oat genetic markers based on Diversity Array Technology (DArT). RESULTS: Approximately 19,000 genomic clones were isolated from complexity-reduced genomic representations of pooled DNA samples from 60 oat varieties of global origin. These were screened on three discovery arrays, with more than 2000 polymorphic markers being identified for use in this study, and approximately 2700 potentially polymorphic markers being identified for use in future studies. DNA sequence was obtained for 2573 clones and assembled into a non-redundant set of 1770 contigs and singletons. Of these, 705 showed highly significant (Expectation < 10E-10) BLAST similarity to gene sequences in public databases. Based on marker scores in 80 recombinant inbred lines, 1010 new DArT markers were used to saturate and improve the 'Kanota' x 'Ogle' genetic map. DArT markers provided map coverage approximately equivalent to existing markers. After binning markers from similar clones, as well as those with 99% scoring similarity, a set of 1295 non-redundant markers was used to analyze genetic diversity in 182 accessions of cultivated oat of worldwide origin. Results of this analysis confirmed that major clusters of oat diversity are related to spring vs. winter type, and to the presence of major breeding programs within geographical regions. Secondary clusters revealed groups that were often related to known pedigree structure. CONCLUSION: These markers will provide a solid basis for future efforts in genomic discovery, comparative mapping, and the generation of an oat consensus map. They will also provide new opportunities for directed breeding of superior oat varieties, and guidance in the maintenance of oat genetic diversity.


Asunto(s)
Avena/genética , Mapeo Cromosómico/métodos , Marcadores Genéticos , Genoma de Planta , Análisis por Conglomerados , ADN de Plantas/genética , Biblioteca Genómica , Genotipo , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo Genético , Análisis de Secuencia de ADN
6.
Mycologia ; 111(4): 563-573, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31112486

RESUMEN

Fusarium head blight (FHB), caused by Fusarium graminearum and other Fusarium species, is a detrimental disease that affects small grains such as wheat around the world. Management of FHB is difficult, and surveillance as well as a better understanding of pathogen aggressiveness is needed for improved control. F. graminearum disease severity varies depending on the resistance of the host genotype. In this study, we used the field pathogenomics method to investigate gene expression and population structure of isolates collected from wheat lines of varying resistance levels (susceptible, intermediate, and resistant) as well as an axenic control. Differential gene expression was found among isolates collected from different host genotypes. Candidate gene sets were identified for both F. graminearum infection of specific host genotypes and general infection to wheat. Population structure of isolates from different resistance level sources was the same, with all isolates belonging to the NA1 population.


Asunto(s)
Resistencia a la Enfermedad/genética , Fusarium/genética , Perfilación de la Expresión Génica , Enfermedades de las Plantas/microbiología , Triticum , Fusariosis/microbiología , Fusarium/patogenicidad , Genes Fúngicos , Genotipo , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/genética , Triticum/microbiología
7.
PLoS One ; 14(2): e0208217, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30794545

RESUMEN

Grain yield is a trait of paramount importance in the breeding of all cereals. In wheat (Triticum aestivum L.), yield has steadily increased since the Green Revolution, though the current rate of increase is not forecasted to keep pace with demand due to growing world population and increasing affluence. While several genome-wide association studies (GWAS) on yield and related component traits have been performed in wheat, the previous lack of a reference genome has made comparisons between studies difficult. In this study, a GWAS for yield and yield-related traits was carried out on a population of 322 soft red winter wheat lines across a total of four rain-fed environments in the state of Virginia using single-nucleotide polymorphism (SNP) marker data generated by a genotyping-by-sequencing (GBS) protocol. Two separate mixed linear models were used to identify significant marker-trait associations (MTAs). The first was a single-locus model utilizing a leave-one-chromosome-out approach to estimating kinship. The second was a sub-setting kinship estimation multi-locus method (FarmCPU). The single-locus model identified nine significant MTAs for various yield-related traits, while the FarmCPU model identified 74 significant MTAs. The availability of the wheat reference genome allowed for the description of MTAs in terms of both genetic and physical positions, and enabled more extensive post-GWAS characterization of significant MTAs. The results indicate a number of promising candidate genes contributing to grain yield, including an ortholog of the rice aberrant panicle organization (APO1) protein and a gibberellin oxidase protein (GA2ox-A1) affecting the trait grains per square meter, an ortholog of the Arabidopsis thaliana mother of flowering time and terminal flowering 1 (MFT) gene affecting the trait seeds per square meter, and a B2 heat stress response protein affecting the trait seeds per head.


Asunto(s)
Estudio de Asociación del Genoma Completo , Carácter Cuantitativo Heredable , Triticum/genética , Mapeo Cromosómico , Producción de Cultivos , Grano Comestible/clasificación , Grano Comestible/genética , Estudios de Asociación Genética , Marcadores Genéticos , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple , Semillas , Triticum/clasificación , Virginia
8.
Plant Genome ; 10(2)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28724060

RESUMEN

Oat crown rust, caused by f. sp. , is a major constraint to oat ( L.) production in many parts of the world. In this first comprehensive multienvironment genome-wide association map of oat crown rust, we used 2972 single-nucleotide polymorphisms (SNPs) genotyped on 631 oat lines for association mapping of quantitative trait loci (QTL). Seedling reaction to crown rust in these lines was assessed as infection type (IT) with each of 10 crown rust isolates. Adult plant reaction was assessed in the field in a total of 10 location-years as percentage severity (SV) and as infection reaction (IR) in a 0-to-1 scale. Overall, 29 SNPs on 12 linkage groups were predictive of crown rust reaction in at least one experiment at a genome-wide level of statistical significance. The QTL identified here include those in regions previously shown to be linked with seedling resistance genes , , , , , and and also with adult-plant resistance and adaptation-related QTL. In addition, QTL on linkage groups Mrg03, Mrg08, and Mrg23 were identified in regions not previously associated with crown rust resistance. Evaluation of marker genotypes in a set of crown rust differential lines supported as the identity of . The SNPs with rare alleles associated with lower disease scores may be suitable for use in marker-assisted selection of oat lines for crown rust resistance.


Asunto(s)
Avena/genética , Avena/microbiología , Basidiomycota/patogenicidad , Genoma de Planta , Estudio de Asociación del Genoma Completo , Ligamiento Genético , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
9.
PLoS One ; 11(5): e0155376, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27175781

RESUMEN

Barley yellow dwarf viruses (BYDVs) are responsible for the disease barley yellow dwarf (BYD) and affect many cereals including oat (Avena sativa L.). Until recently, the molecular marker technology in oat has not allowed for many marker-trait association studies to determine the genetic mechanisms for tolerance. A genome-wide association study (GWAS) was performed on 428 spring oat lines using a recently developed high-density oat single nucleotide polymorphism (SNP) array as well as a SNP-based consensus map. Marker-trait associations were performed using a Q-K mixed model approach to control for population structure and relatedness. Six significant SNP-trait associations representing two QTL were found on chromosomes 3C (Mrg17) and 18D (Mrg04). This is the first report of BYDV tolerance QTL on chromosome 3C (Mrg17) and 18D (Mrg04). Haplotypes using the two QTL were evaluated and distinct classes for tolerance were identified based on the number of favorable alleles. A large number of lines carrying both favorable alleles were observed in the panel.


Asunto(s)
Avena/genética , Avena/virología , Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Luteovirus/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Alelos , Mapeo Cromosómico , Genética de Población , Genoma de Planta , Genotipo , Haplotipos , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
10.
Plant Genome ; 9(1)2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-27898754

RESUMEN

Fusarium head blight (FHB) is one of the most important wheat ( L.) diseases worldwide, and host resistance displays complex genetic control. A genome-wide association study (GWAS) was performed on 273 winter wheat breeding lines from the midwestern and eastern regions of the United States to identify chromosomal regions associated with FHB resistance. Genotyping-by-sequencing (GBS) was used to identify 19,992 single-nucleotide polymorphisms (SNPs) covering all 21 wheat chromosomes. Marker-trait associations were performed with different statistical models, the most appropriate being a compressed mixed linear model (cMLM) controlling for relatedness and population structure. Ten significant SNP-trait associations were detected on chromosomes 4A, 6A, 7A, 1D, 4D, and 7D, and multiple SNPs were associated with on chromosome 3B. Although combination of favorable alleles of these SNPs resulted in lower levels of severity (SEV), incidence (INC), and deoxynivalenol concentration (DON), lines carrying multiple beneficial alleles were in very low frequency for most traits. These SNPs can now be used for creating new breeding lines with different combinations of favorable alleles. This is one of the first GWAS using genomic resources from the International Wheat Genome Sequencing Consortium (IWGSC).


Asunto(s)
Resistencia a la Enfermedad/genética , Fusarium/fisiología , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Triticum/genética , Triticum/microbiología , Genotipo , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo
11.
Plant Genome ; 9(2)2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27898818

RESUMEN

Hexaploid oat ( L., 2 = 6 = 42) is a member of the Poaceae family and has a large genome (∼12.5 Gb) containing 21 chromosome pairs from three ancestral genomes. Physical rearrangements among parental genomes have hindered the development of linkage maps in this species. The objective of this work was to develop a single high-density consensus linkage map that is representative of the majority of commonly grown oat varieties. Data from a cDNA-derived single-nucleotide polymorphism (SNP) array and genotyping-by-sequencing (GBS) were collected from the progeny of 12 biparental recombinant inbred line populations derived from 19 parents representing oat germplasm cultivated primarily in North America. Linkage groups from all mapping populations were compared to identify 21 clusters of conserved collinearity. Linkage groups within each cluster were then merged into 21 consensus chromosomes, generating a framework consensus map of 7202 markers spanning 2843 cM. An additional 9678 markers were placed on this map with a lower degree of certainty. Assignment to physical chromosomes with high confidence was made for nine chromosomes. Comparison of homeologous regions among oat chromosomes and matches to orthologous regions of rice ( L.) reveal that the hexaploid oat genome has been highly rearranged relative to its ancestral diploid genomes as a result of frequent translocations among chromosomes. Heterogeneous chromosome rearrangements among populations were also evident, probably accounting for the failure of some linkage groups to match the consensus. This work contributes to a further understanding of the organization and evolution of hexaploid grass genomes.


Asunto(s)
Avena/genética , Genoma de Planta/genética , Sintenía , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Ligamiento Genético , Genotipo , América del Norte , Polimorfismo de Nucleótido Simple , Poliploidía
12.
Plant Genome ; 9(2)2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27898836

RESUMEN

Six hundred thirty five oat ( L.) lines and 4561 single-nucleotide polymorphism (SNP) loci were used to evaluate population structure, linkage disequilibrium (LD), and genotype-phenotype association with heading date. The first five principal components (PCs) accounted for 25.3% of genetic variation. Neither the eigenvalues of the first 25 PCs nor the cross-validation errors from = 1 to 20 model-based analyses suggested a structured population. However, the PC and = 2 model-based analyses supported clustering of lines on spring oat vs. southern United States origin, accounting for 16% of genetic variation ( < 0.0001). Single-locus -statistic () in the highest 1% of the distribution suggested linkage groups that may be differentiated between the two population subgroups. Population structure and kinship-corrected LD of = 0.10 was observed at an average pairwise distance of 0.44 cM (0.71 and 2.64 cM within spring and southern oat, respectively). On most linkage groups LD decay was slower within southern lines than within the spring lines. A notable exception was found on linkage group Mrg28, where LD decay was substantially slower in the spring subpopulation. It is speculated that this may be caused by a heterogeneous translocation event on this chromosome. Association with heading date was most consistent across location-years on linkage groups Mrg02, Mrg12, Mrg13, and Mrg24.


Asunto(s)
Adaptación Fisiológica/genética , Avena/genética , Metagenómica , Estudios de Asociación Genética , Variación Genética , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple/genética
13.
Plant Dis ; 89(2): 170-176, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30795220

RESUMEN

Barley yellow dwarf virus (BYDV) is a serious disease of soft red winter wheat. Although there has been interest in tolerant cultivars, identification and development has been slow due to a lack of precision in rating plants for response to BYDV. Visual ratings of symptoms are commonly used to evaluate cultivars, but these ratings have proven to be inconsistent. The objectives of this research were to assess BYDV visual symptom ratings of wheat cultivars under field conditions, to measure disease-related yield reductions in these cultivars, to determine if a relationship exists between BYDV visual symptoms and yield reductions, and to determine BYDV cultivar tolerance. A split-plot design with insecticide treatment (main plot) and 11 cultivars (subplots) was employed over 4 years. The overall relationship between symptom ratings and BYDV yield reductions was weak (R2 = 0.40) and not consistent across years or cultivars. A consistency of performance analysis showed cultivars clustered into five distinct tolerance classes. Under conditions of high BYDV infestation, visual symptom ratings could be cautiously used to identify highly tolerant cultivars. The most reliable method for rating cultivar tolerance was a direct measure of disease-induced yield reduction across multiple environments.

14.
Plant Genome ; 8(3): eplantgenome2015.01.0003, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33228272

RESUMEN

Genomic selection (GS) is a breeding method that uses marker-trait models to predict unobserved phenotypes. This study developed GS models for predicting traits associated with resistance to Fusarium head blight (FHB) in wheat (Triticum aestivum L.). We used genotyping-by-sequencing (GBS) to identify 5054 single-nucleotide polymorphisms (SNPs), which were then treated as predictor variables in GS analysis. We compared how the prediction accuracy of the genomic-estimated breeding values (GEBVs) was affected by (i) five genotypic imputation methods (random forest imputation [RFI], expectation maximization imputation [EMI], k-nearest neighbor imputation [kNNI], singular value decomposition imputation [SVDI], and the mean imputation [MNI]); (ii) three statistical models (ridge-regression best linear unbiased predictor [RR-BLUP], least absolute shrinkage and operator selector [LASSO], and elastic net); (iii) marker density (p = 500, 1500, 3000, and 4500 SNPs); (iv) training population (TP) size (nTP = 96, 144, 192, and 218); (v) marker-based and pedigree-based relationship matrices; and (vi) control for relatedness in TPs and validation populations (VPs). No discernable differences in prediction accuracy were observed among imputation methods. The RR-BLUP outperformed other models in nearly all scenarios. Accuracies decreased substantially when marker number decreased to 3000 or 1500 SNPs, depending on the trait; when sample size of the training set was less than 192; when using pedigree-based instead of marker-based matrix; or when no control for relatedness was implemented. Overall, moderate to high prediction accuracies were observed in this study, suggesting that GS is a very promising breeding strategy for FHB resistance in wheat.

15.
PLoS One ; 8(3): e58068, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23533580

RESUMEN

A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources.


Asunto(s)
Avena/genética , Mapeo Cromosómico/métodos , Polimorfismo de Nucleótido Simple/genética , Sintenía/genética , Genoma de Planta/genética
16.
Genome ; 48(5): 770-80, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16391683

RESUMEN

Fusarium head blight (FHB) caused by Fusarium graminearum is a destructive disease of wheat and barley. It causes economic losses due to reduction in both yield and quality. Although FHB resistance has been well documented and resistant cultivars have been developed to reduce incidence and severity of FHB, there is a limited understanding of the molecular mechanisms involved in plant resistance against the infection and spread of F. graminearum. In the current study, 2-dimensional displays of proteins extracted from wheat spikelets infected with F. graminearum were compared with those from spikelets inoculated with sterile H2O. Fifteen protein spots were detected that were either induced (qualitatively different) or upregulated (quantitatively increased) following F. graminearum infection of spikelets of 'Ning7840', a resistant cultivar. These proteins were identified by LC-MS/MS analysis. Proteins with an antioxidant function such as superoxide dismutase, dehydroascorbate reductase, and glutathione S-transferases (GSTs) were upregulated or induced 5 d after inoculation with F. graminearum, indicating an oxidative burst of H2O2 inside the tissues infected by FHB. An ascorbate-glutathione cycle is likely involved in reduction of H2O2. Expression of proteins with highest similarity to dehydroascorbate reductase and TaGSTF5 (a glutathione S-transferase) differed following FHB infection in susceptible and resistant cultivars. A 14-3-3 protein homolog was also upregulated in FHB-infected spikelets. In addition, a PR-2 protein (beta-1, 3 glucanase) was upregulated in FHB-infected spikes, which is in accord with a previous study that analyzed transcript accumulation.


Asunto(s)
Fusarium/fisiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/microbiología , Secuencia de Aminoácidos , Electroforesis en Gel Bidimensional , Glucano 1,3-beta-Glucosidasa/metabolismo , Glutatión Transferasa/metabolismo , Datos de Secuencia Molecular , Oxidorreductasas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteómica , Superóxido Dismutasa/metabolismo , Triticum/química , Triticum/enzimología , Triticum/metabolismo , Regulación hacia Arriba
17.
Genome ; 45(4): 719-27, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12175075

RESUMEN

Three chromosomal regions associated with scab resistance were detected in a common cultivar, Ning7840, by microsatellite and AFLP analysis. Six microsatellites on chromosome 3BS, Xgwm389, Xgwm533, Xbarc147, Xgwm493, Xbarc102, and Xbarc131, were integrated into an amplified fragment length polymorphism (AFLP) linkage group containing a major quantitative trait locus (QTL) for scab resistance in a mapping population of 133 recombinant inbred lines (RILs) derived from 'Ning7840' x 'Clark'. Based on single-factor analysis of variance of scab infection data from four experiments, Xgwm533 and Xbarc147 were the two microsatellite markers most tightly associated with the major scab resistance QTL. Interval analysis based on the integrated map of AFLP and microsatellite markers showed that the major QTL was located in a chromosome region about 8 cM in length around Xgwm533 and Xbarc147. Based on mapping of six microsatellite markers on eight 3BS deletion lines, the major QTL was located distal to breakage point 3BS-8. In total, 18 microsatellites were physically located on different subarm regions on 3BS. Two microsatellites, Xgwm120 and Xgwm614, were significantly associated with QTL for scab resistance on chromosome 2BL and 2AS, respectively. The resistance alleles on 3BS, 2BL, and 2AS were all derived from 'Ning7840'. Significant interaction between the major QTL on 3BS and the QTL on 2BL was detected based on microsatellite markers linked to them. Using these microsatellite markers would facilitate marker-assisted selection to improve scab resistance in wheat.


Asunto(s)
Repeticiones de Microsatélite , Sitios de Carácter Cuantitativo , Triticum/genética , Mapeo Cromosómico , Fusarium/patogenicidad , Triticum/microbiología
18.
Genome ; 47(6): 1137-43, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15644972

RESUMEN

Molecular mapping of Fusarium head blight (FHB) resistance quantitative trait loci (QTL) and marker-assisted selection of these QTL will aid in the development of resistant cultivars. Most reported FHB resistance QTL are from 'Sumai 3' and its derivatives. 'Wangshuibai' is a FHB-resistant landrace that originated from China and is not known to be related to 'Sumai 3'. A mapping population of 139 F(5:6) recombinant inbred lines was developed from a cross of 'Wangshuibai' and 'Wheaton'. This population was developed to map the FHB-resistant QTL in 'Wangshuibai' and was evaluated twice for Type II FHB resistance. A total of 1196 simple sequence repeat and amplified fragment length polymorphism markers were screened on this population, and four FHB resistance QTL were detected. A major QTL near the end of 3BS explained 37.3% of the phenotypic variation. Another QTL on 3BS, located close to the centromere, explained 7.4% of the phenotypic variation. Two additional QTL on 7AL and 1BL explained 9.8% and 11.9% of the phenotypic variation, respectively. The simple sequence repeat and amplified fragment length polymorphism markers closely linked to these QTL may be useful for stacking QTL from 'Wangshuibai' and other sources to develop cultivars with transgressive FHB resistance.


Asunto(s)
Fusarium/genética , Marcadores Genéticos , Enfermedades de las Plantas , Polimorfismo de Longitud del Fragmento de Restricción , China , Mapeo Cromosómico , Cruzamientos Genéticos , Cartilla de ADN/química , Cartilla de ADN/genética , Ligamiento Genético , Variación Genética , Escala de Lod , Modelos Genéticos , Fenotipo , Enfermedades de las Plantas/genética , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Sitios de Carácter Cuantitativo , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA