Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(22): E3091-100, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27185954

RESUMEN

Canine degenerative myelopathy (DM) is a naturally occurring neurodegenerative disease with similarities to some forms of amyotrophic lateral sclerosis (ALS). Most dogs that develop DM are homozygous for a common superoxide dismutase 1 gene (SOD1) mutation. However, not all dogs homozygous for this mutation develop disease. We performed a genome-wide association analysis in the Pembroke Welsh Corgi (PWC) breed comparing DM-affected and -unaffected dogs homozygous for the SOD1 mutation. The analysis revealed a modifier locus on canine chromosome 25. A haplotype within the SP110 nuclear body protein (SP110) was present in 40% of affected compared with 4% of unaffected dogs (P = 1.5 × 10(-5)), and was associated with increased probability of developing DM (P = 4.8 × 10(-6)) and earlier onset of disease (P = 1.7 × 10(-5)). SP110 is a nuclear body protein involved in the regulation of gene transcription. Our findings suggest that variations in SP110-mediated gene transcription may underlie, at least in part, the variability in risk for developing DM among PWCs that are homozygous for the disease-related SOD1 mutation. Further studies are warranted to clarify the effect of this modifier across dog breeds.


Asunto(s)
Enfermedades de los Perros/genética , Enfermedades Musculares/genética , Mutación/genética , Enfermedades Neurodegenerativas/genética , Proteínas Nucleares/genética , Enfermedades de la Médula Espinal/genética , Superóxido Dismutasa/genética , Edad de Inicio , Animales , Modelos Animales de Enfermedad , Enfermedades de los Perros/patología , Perros , Femenino , Estudio de Asociación del Genoma Completo , Homocigoto , Masculino , Enfermedades Musculares/patología , Enfermedades Neurodegenerativas/patología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Enfermedades de la Médula Espinal/patología
2.
Neurogenetics ; 18(1): 39-47, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27891564

RESUMEN

Hereditary paroxysmal dyskinesias (PxD) are a heterogeneous group of movement disorders classified by frequency, duration, and triggers of the episodes. A young-adult onset canine PxD has segregated as an autosomal recessive trait in Soft-Coated Wheaten Terriers. The medical records and videos of episodes from 25 affected dogs were reviewed. The episodes of hyperkinesia and dystonia lasted from several minutes to several hours and could occur as often as >10/day. They were not associated with strenuous exercise or fasting but were sometimes triggered by excitement. The canine PxD phenotype most closely resembled paroxysmal non-kinesigenic dyskinesia (PNKD) of humans. Whole genome sequences were generated with DNA from 2 affected dogs and analyzed in comparison to 100 control canid whole genome sequences. The two whole genome sequences from dogs with PxD had a rare homozygous PIGN:c.398C > T transition, which predicted the substitution of an isoleucine for a highly conserved threonine in the encoded enzyme. All 25 PxD-affected dogs were PIGN:c.398T allele homozygotes, whereas there were no c.398T homozygotes among 1185 genotyped dogs without known histories of PxD. PIGN encodes an enzyme involved in the biosynthesis of glycosylphosphatidylinositol (GPI), which anchors a variety of proteins including CD59 to the cell surface. Flow cytometry of PIGN-knockout HEK239 cells expressing recombinant human PIGN with the c.398T variant showed reduced CD59 expression. Mutations in human PIGN have been associated with multiple congenital anomalies-hypotonia-seizures syndrome-1 (MCAHS1). Movement disorders can be a part of MCAHS1, but this is the first PxD associated with altered GPI anchor function.


Asunto(s)
Corea/genética , Enfermedades de los Perros/genética , Mutación Missense , Fosfotransferasas/genética , Animales , Corea/veterinaria , Perros , Femenino , Glicosilfosfatidilinositoles/metabolismo , Células HEK293 , Homocigoto , Humanos , Masculino , Linaje , Fenotipo , Fosfotransferasas/metabolismo
3.
Front Immunol ; 12: 734096, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539671

RESUMEN

The implementation of severe combined immunodeficiency (SCID) newborn screening has played a pivotal role in identifying these patients early in life as well as detecting various milder forms of T cell lymphopenia (TCL). In this study we reviewed the diagnostic and clinical outcomes, and interesting immunology findings of term infants referred to a tertiary care center with abnormal newborn SCID screens over a 6-year period. Key findings included a 33% incidence of non-SCID TCL including infants with novel variants in FOXN1, TBX1, MYSM1, POLD1, and CD3E; 57% positivity rate of newborn SCID screening among infants with DiGeorge syndrome; and earlier diagnosis and improved transplant outcomes for SCID in infants diagnosed after compared to before implementation of routine screening. Our study is unique in terms of the extensive laboratory workup of abnormal SCID screens including lymphocyte subsets, measurement of thymic output (TREC and CD4TE), and lymphocyte proliferation to mitogens in nearly all infants. These data allowed us to observe a stronger positive correlation of the absolute CD3 count with CD4RTE than with TREC copies, and a weak positive correlation between CD4RTE and TREC copies. Finally, we did not observe a correlation between risk of TCL and history of prenatal or perinatal complications or low birth weight. Our study demonstrated SCID newborn screening improves disease outcomes, particularly in typical SCID, and allows early detection and discovery of novel variants of certain TCL-associated genetic conditions.


Asunto(s)
Tamizaje Neonatal/métodos , Inmunodeficiencia Combinada Grave/inmunología , Peso al Nacer , Preescolar , Femenino , Factores de Transcripción Forkhead/genética , Humanos , Lactante , Recién Nacido , Masculino , Inmunodeficiencia Combinada Grave/diagnóstico , Inmunodeficiencia Combinada Grave/genética , Proteínas de Dominio T Box/genética , Centros de Atención Terciaria , Transactivadores/genética , Resultado del Tratamiento , Proteasas Ubiquitina-Específicas/genética , Estados Unidos
4.
Parkinsonism Relat Disord ; 83: 22-30, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33454605

RESUMEN

INTRODUCTION: Genome-wide association studies (GWAS) have confirmed the leucine-rich repeat kinase 2 (LRRK2) gene as a susceptibility locus for idiopathic Parkinson's disease (PD) in Caucasians. Though the rs1491942 and rs76904798 variants have shown the strongest associations, the causal variant(s) remains unresolved. Therefore, the aim of this study was to identify variants that may be driving the LRRK2 GWAS signal by sequencing the entire LRRK2 gene in Caucasian PD patients and controls. METHODS: A discovery series (287 PD patients, 294 controls) and replication series (362 PD patients, 168 controls) were included. The entire LRRK2 gene as well as 10 Kb upstream/downstream was sequenced. Candidate potential causal variants were considered to be those that (a) were in at least weak linkage disequilibrium with the two GWAS-nominated variants (rs1491942 and rs76904798), and (b) displayed an association odds ratio (OR) that is stronger than the two GWAS variants. RESULTS: Thirty-four candidate variants (all intronic/intergenic) that may drive the LRRK2 PD GWAS signal were identified in the discovery series. However, examination of the replication series for these variants did not reveal any with a consistently stronger OR than both PD GWAS variants. Evaluation of public databases to determine which candidate variants are most likely to have a direct functional effect on LRRK2 expression was inconclusive. CONCLUSION: Though our findings provide novel insights into the LRRK2 GWAS association, a clear causal variant was not identified. The identified candidate variants can form the basis for future experiments and functional studies that can more definitively assess causal LRRK2 variants.


Asunto(s)
Estudio de Asociación del Genoma Completo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/genética , Población Blanca/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA