Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem J ; 468(2): 345-52, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25825869

RESUMEN

Eukaryotic gene expression is developmentally regulated, in part by chromatin remodelling, and its dysregulation has been linked to cancer. CHD5 (chromodomain helicase DNA-binding protein 5) is a tumour suppressor gene (TSG) that maps to a region of consistent deletion on 1p36.31 in neuroblastomas (NBs) and other tumour types. CHD5 encodes a protein with chromatin remodelling, helicase and DNA-binding motifs that is preferentially expressed in neural and testicular tissues. CHD5 is highly homologous to CHD3 and CHD4, which are the core subunits of nucleosome remodelling and deacetylation (NuRD) complexes. To determine if CHD5 forms a similar complex, we performed studies on nuclear extracts from NBLS, SY5Y (both with endogenous CHD5 expression), NLF (CHD5 null) and NLF cells stably transfected with CHD5 cDNA (wild-type and V5-histidine-tagged). Immunoprecipitation (IP) was performed with either CHD5 antibody or antibody to V5/histidine-tagged protein. We identified NuRD components both by GST-FOG1 (Friend Of GATA1) pull-down and by IP. We also performed MS/MS analysis to confirm the presence of CHD5 or other protein components of the NuRD complex, as well as to identify other novel proteins. CHD5 was clearly associated with all canonical NuRD components, including metastasis-associated protein (MTA)1/2, GATA zinc finger domain containing 2A (GATAD2A), histone deacetylase (HDAC)1/2, retinoblastoma-binding protein (RBBP)4/7 and methyl DNA-binding domain protein (MBD)2/3, as determined by Western blotting and MS/MS. Our data suggest CHD5 forms a NuRD complex similar to CHD4. However, CHD5-NuRD may also have unique protein associations that confer functional specificity and may contribute to normal development and to tumour suppression in NB and other cancers.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Ensamble y Desensamble de Cromatina , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Neuroblastoma/metabolismo , Nucleosomas/metabolismo , Western Blotting , Núcleo Celular/metabolismo , Cromatografía Liquida , Técnica del Anticuerpo Fluorescente , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Neuroblastoma/patología , Espectrometría de Masas en Tándem , Células Tumorales Cultivadas
2.
Mol Cancer ; 14: 150, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26245651

RESUMEN

BACKGROUND: Chromodomain-helicase DNA binding protein 5 (CHD5) is an important tumor suppressor gene deleted from 1p36.31 in neuroblastomas (NBs). High CHD5 expression is associated with a favorable prognosis, but deletion or low expression is frequent in high-risk tumors. We explored the role of CHD5 expression in the neuronal differentiation of NB cell lines. METHODS: NB cell lines SH-SY5Y (SY5Y), NGP, SK-N-DZ, IMR5, LAN5, SK-N-FI, NB69 and SH-EP were treated with 1-10 µM 13-cis-retinoic acid (13cRA) for 3-12 days. qRT-PCR and Western blot analyses were performed to measure mRNA and protein expression levels, respectively. Morphological differences were examined by both phase contrast and immunofluorescence studies. RESULTS: Treatment of SY5Y cells with 13cRA caused upregulation of CHD5 expression in a time- and dose-dependent manner (1, 5, or 10 µM for 7 or 12 days) and also induced neuronal differentiation. Furthermore, both NGP and SK-N-DZ cells showed CHD5 upregulation and neuronal differentiation after 13cRA treatment. In contrast, 13cRA treatment of IMR5, LAN5, or SK-N-FI induced neither CHD5 expression nor neuronal differentiation. NB69 cells showed two different morphologies (neuronal and substrate adherent) after 12 days treatment with 10 µM of 13cRA. CHD5 expression was high in the neuronal cells, but low/absent in the flat, substrate adherent cells. Finally, NGF treatment caused upregulation of CHD5 expression and neuronal differentiation in SY5Y cells transfected to express TrkA (SY5Y-TrkA) but not in TrkA-null parental SY5Y cells, and both changes were blocked by a pan-TRK inhibitor. CONCLUSIONS: Treatment with 13cRA induces neuronal differentiation only in NB cells that upregulate CHD5. In addition, NGF induced CHD5 upregulation and neuronal differentiation only in TrkA expressing cells. Together, these results suggest that CHD5 is downstream of TrkA, and CHD5 expression may be crucial for neuronal differentiation induced by either 13cRA or TrkA/NGF signaling.


Asunto(s)
ADN Helicasas/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Neuroblastoma/genética , Tretinoina/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , ADN Helicasas/metabolismo , Humanos , Factor de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Receptor trkA/genética , Receptor trkA/metabolismo , Regulación hacia Arriba
3.
Oncotarget ; 7(13): 15977-85, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26895110

RESUMEN

Neuroblastoma (NB), a tumor of the sympathetic nervous system, is the most common extracranial solid tumor of childhood. We and others have identified distinct patterns of genomic change that underlie diverse clinical behaviors, from spontaneous regression to relentless progression. We first identified CHD5 as a tumor suppressor gene that is frequently deleted in NBs. Mutation of the remaining CHD5 allele is rare in these tumors, yet expression is very low or absent, so expression is likely regulated by epigenetic mechanisms. In order to understand the potential role of miRNA regulation of CHD5 protein expression in NBs, we examined all miRNAs that are predicted to target the 3'-UTR using miRanda, TargetScan and other algorithms. We identified 18 miRNAs that were predicted by 2 or more programs: miR-204, -211, -216b, -17, -19ab, -20ab, -93, -106ab, -130ab, -301ab, -454, -519d, -3666. We then performed transient transfections in two NB cell lines, NLF (MYCN amplified) and SY5Y (MYCN non-amplified), with the reporter plasmid and miRNA mimic, as well as appropriate controls. We found seven miRNAs that significantly downregulated CHD5 expression in NB: miR-211, 17, -93, -20b, -106b, -204, and -3666. Interestingly, MYCN upregulates several of the candidates we identified: miR-17, -93, -106b & -20b. This suggests that miRNAs driven by MYCN and other genes represent a potential epigenetic mechanism to regulate CHD5 expression.


Asunto(s)
ADN Helicasas/genética , Regulación Neoplásica de la Expresión Génica/genética , Silenciador del Gen/fisiología , MicroARNs/genética , Proteínas del Tejido Nervioso/genética , Neuroblastoma/genética , Línea Celular Tumoral , ADN Helicasas/biosíntesis , Genes Supresores de Tumor/fisiología , Humanos , Proteínas del Tejido Nervioso/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA