Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Gastroenterology ; 158(8): 2236-2249.e9, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32112796

RESUMEN

BACKGROUND & AIMS: Microvillus inclusion disease (MVID) is caused by inactivating mutations in the myosin VB gene (MYO5B). MVID is a complex disorder characterized by chronic, watery, life-threatening diarrhea that usually begins in the first hours to days of life. We developed a large animal model of MVID to better understand its pathophysiology. METHODS: Pigs were cloned by transfer of chromatin from swine primary fetal fibroblasts, which were edited with TALENs and single-strand oligonucleotide to introduce a P663-L663 substitution in the endogenous swine MYO5B (corresponding to the P660L mutation in human MYO5B, associated with MVID) to fertilized oocytes. We analyzed duodenal tissues from patients with MVID (with the MYO5B P660L mutation) and without (controls), and from pigs using immunohistochemistry. Enteroids were generated from pigs with MYO5B(P663L) and without the substitution (control pigs). RESULTS: Duodenal tissues from patients with MVID lacked MYO5B at the base of the apical membrane of intestinal cells; instead MYO5B was intracellular. Intestinal tissues and derived enteroids from MYO5B(P663L) piglets had reduced apical levels and diffuse subapical levels of sodium hydrogen exchanger 3 and SGLT1, which regulate transport of sodium, glucose, and water, compared with tissues from control piglets. However, intestinal tissues and derived enteroids from MYO5B(P663L) piglets maintained CFTR on apical membranes, like tissues from control pigs. Liver tissues from MYO5B(P663L) piglets had alterations in bile salt export pump, a transporter that facilitates bile flow, which is normally expressed in the bile canaliculi in the liver. CONCLUSIONS: We developed a large animal model of MVID that has many features of the human disease. Studies of this model could provide information about the functions of MYO5B and MVID pathogenesis, and might lead to new treatments.


Asunto(s)
Duodeno/metabolismo , Edición Génica , Mucosa Intestinal/metabolismo , Síndromes de Malabsorción/genética , Microvellosidades/patología , Mucolipidosis/genética , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Transportador 1 de Sodio-Glucosa/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Animales , Animales Modificados Genéticamente , Células Cultivadas , Técnicas de Cocultivo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Modelos Animales de Enfermedad , Duodeno/patología , Predisposición Genética a la Enfermedad , Humanos , Mucosa Intestinal/patología , Síndromes de Malabsorción/metabolismo , Síndromes de Malabsorción/patología , Microvellosidades/genética , Microvellosidades/metabolismo , Mucolipidosis/metabolismo , Mucolipidosis/patología , Mutación Missense , Fenotipo , Sodio/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Intercambiador 3 de Sodio-Hidrógeno/genética , Sus scrofa
2.
J Biol Chem ; 292(50): 20394-20409, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29054927

RESUMEN

Microtubules in animal cells assemble (nucleate) from both the centrosome and the cis-Golgi cisternae. A-kinase anchor protein 350 kDa (AKAP350A, also called AKAP450/CG-NAP/AKAP9) is a large scaffolding protein located at both the centrosome and Golgi apparatus. Previous findings have suggested that AKAP350 is important for microtubule dynamics at both locations, but how this scaffolding protein assembles microtubule nucleation machinery is unclear. Here, we found that overexpression of the C-terminal third of AKAP350A, enhanced GFP-AKAP350A(2691-3907), induces the formation of multiple microtubule-nucleation centers (MTNCs). Nevertheless, these induced MTNCs lacked "true" centriole proteins, such as Cep135. Mapping analysis with AKAP350A truncations demonstrated that AKAP350A contains discrete regions responsible for promoting or inhibiting the formation of multiple MTNCs. Moreover, GFP-AKAP350A(2691-3907) recruited several pericentriolar proteins to MTNCs, including γ-tubulin, pericentrin, Cep68, Cep170, and Cdk5RAP2. Proteomic analysis indicated that Cdk5RAP2 and Cep170 both interact with the microtubule nucleation-promoting region of AKAP350A, whereas Cep68 interacts with the distal C-terminal AKAP350A region. Yeast two-hybrid assays established a direct interaction of Cep170 with AKAP350A. Super-resolution and deconvolution microscopy analyses were performed to define the association of AKAP350A with centrosomes, and these studies disclosed that AKAP350A spans the bridge between centrioles, co-localizing with rootletin and Cep68 in the linker region. siRNA-mediated depletion of AKAP350A caused displacement of both Cep68 and Cep170 from the centrosome. These results suggest that AKAP350A acts as a scaffold for factors involved in microtubule nucleation at the centrosome and coordinates the assembly of protein complexes associating with the intercentriolar bridge.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Centrosoma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Modelos Moleculares , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Anclaje a la Quinasa A/antagonistas & inhibidores , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/genética , Biomarcadores/metabolismo , Proteínas de Ciclo Celular , Línea Celular , Centrosoma/ultraestructura , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Humanos , Imagenología Tridimensional , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Centro Organizador de los Microtúbulos/ultraestructura , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteómica/métodos , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Técnicas del Sistema de Dos Híbridos
3.
bioRxiv ; 2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36747680

RESUMEN

Microvillus Inclusion Disease (MVID), caused by loss-of-function mutations in the motor protein Myosin Vb (MYO5B), is a severe infantile disease characterized by diarrhea, malabsorption, and acid-base instability, requiring intensive parenteral support for nutritional and fluid management. Human patient-derived enteroids represent a model for investigation of monogenic epithelial disorders but are a rare resource from MVID patients. We developed human enteroids with different loss-of function MYO5B variants and showed that they recapitulated the structural changes found in native MVID enterocytes. Multiplex Immunofluorescence imaging of patient duodenal tissues revealed patient-specific changes in localization of brush border transporters. Functional analysis of electrolyte transport revealed profound loss of Na + /H + exchange (NHE) activity in MVID patient enteroids with near-normal chloride secretion. The chloride channel-blocking anti-diarrheal drug, Crofelemer, dose-dependently inhibited agonist-mediated fluid secretion. MVID enteroids exhibited altered differentiation and maturation versus healthy enteroids. Inhibition of Notch signaling with the γ-secretase inhibitor, DAPT, recovered apical brush border structure and functional Na + /H + exchange activity in MVID enteroids. Transcriptomic analysis revealed potential pathways involved in the rescue of MVID cells including serum- and glucocorticoid-induced protein kinase 2 (SGK2), and NHE regulatory factor 3 (NHERF3). These results demonstrate the utility of patient-derived enteroids for developing therapeutic approaches to MVID. Conflict-of-interest statement: The authors have declared that no conflict of interest exists.

4.
J Clin Invest ; 133(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37643022

RESUMEN

Microvillus inclusion disease (MVID), caused by loss-of-function mutations in the motor protein myosin Vb (MYO5B), is a severe infantile disease characterized by diarrhea, malabsorption, and acid/base instability, requiring intensive parenteral support for nutritional and fluid management. Human patient-derived enteroids represent a model for investigation of monogenic epithelial disorders but are a rare resource from MVID patients. We developed human enteroids with different loss-of function MYO5B variants and showed that they recapitulated the structural changes found in native MVID enterocytes. Multiplex immunofluorescence imaging of patient duodenal tissues revealed patient-specific changes in localization of brush border transporters. Functional analysis of electrolyte transport revealed profound loss of Na+/H+ exchange (NHE) activity in MVID patient enteroids with near-normal chloride secretion. The chloride channel-blocking antidiarrheal drug crofelemer dose-dependently inhibited agonist-mediated fluid secretion. MVID enteroids exhibited altered differentiation and maturation versus healthy enteroids. γ-Secretase inhibition with DAPT recovered apical brush border structure and functional Na+/H+ exchange activity in MVID enteroids. Transcriptomic analysis revealed potential pathways involved in the rescue of MVID cells including serum/glucocorticoid-regulated kinase 2 (SGK2) and NHE regulatory factor 3 (NHERF3). These results demonstrate the utility of patient-derived enteroids for developing therapeutic approaches to MVID.


Asunto(s)
Síndromes de Malabsorción , Mucolipidosis , Miosina Tipo V , Humanos , Microvellosidades/genética , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Enterocitos/metabolismo , Síndromes de Malabsorción/genética , Síndromes de Malabsorción/terapia , Síndromes de Malabsorción/metabolismo , Mucolipidosis/genética , Mucolipidosis/terapia , Mucolipidosis/metabolismo
5.
J Cell Physiol ; 227(1): 160-71, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21374596

RESUMEN

Hepatocytes are epithelial cells whose apical poles constitute the bile canaliculi. The establishment and maintenance of canalicular poles is a finely regulated process that dictates the efficiency of primary bile secretion. Protein kinase A (PKA) modulates this process at different levels. AKAP350 is an A-kinase anchoring protein that scaffolds protein complexes involved in modulating the dynamic structures of the Golgi apparatus and microtubule cytoskeleton, facilitating microtubule nucleation at this organelle. In this study, we evaluated whether AKAP350 is involved in the development of bile canaliculi-like structures in hepatocyte derived HepG2 cells. We found that AKAP350 recruits PKA to the centrosomes and Golgi apparatus in HepG2 cells. De-localization of AKAP350 from these organelles led to reduced apical cell polarization. A decrease in AKAP350 expression inhibited the formation of canalicular structures and impaired F-actin organization at canalicular poles. Furthermore, loss of AKAP350 expression led to diminished polarized expression of the p-glycoprotein (MDR1/ABCB1) at the apical "canalicular" membrane. AKAP350 knock down effects on canalicular structures formation and actin organization could be mimicked by inhibition of Golgi microtubule nucleation by depletion of CLIP associated proteins (CLASPs). Our data reveal that AKAP350 participates in mechanisms which determine the development of canalicular structures as well as accurate canalicular expression of distinct proteins and actin organization, and provide evidence on the involvement of Golgi microtubule nucleation in hepatocyte apical polarization.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Canalículos Biliares/metabolismo , Canalículos Biliares/ultraestructura , Polaridad Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Hepatocitos/metabolismo , Hepatocitos/ultraestructura , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Centrosoma/metabolismo , Centrosoma/ultraestructura , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Técnica del Anticuerpo Fluorescente , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Células Hep G2 , Humanos , Immunoblotting , Microscopía Confocal , Microscopía Fluorescente
6.
Exp Cell Res ; 315(3): 542-55, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19073175

RESUMEN

Recent investigations have highlighted the importance of subcellular localization of mRNAs to cell function. While AKAP350A, a multifunctional scaffolding protein, localizes to the Golgi apparatus and centrosomes, we have now identified a cytosolic pool of AKAP350A. Analysis of AKAP350A scaffolded complexes revealed two novel interacting proteins, CCAR1 and caprin-1. CCAR1, caprin-1 and AKAP350A along with G3BP, a stress granule marker, relocate to RNA stress granules after arsenite treatment. Stress also caused loss of AKAP350 from the Golgi and fragmentation of the Golgi apparatus. Disruption of microtubules with nocodazole altered stress granule formation and changed their morphology by preventing fusion of stress granules. In the presence of nocodazole, arsenite induced smaller granules with the vast majority of AKAP350A and CCAR1 separated from G3BP-containing granules. Similar to nocodazole treatment, reduction of AKAP350A or CCAR1 expression also altered the size and number of G3BP-containing stress granules induced by arsenite treatment. A limited set of 69 mRNA transcripts was immunoisolated with AKAP350A even in the absence of stress, suggesting the association of AKAP350A with mRNA transcripts. These results provide the first evidence for the microtubule dependent association of AKAP350A and CCAR1 with RNA stress granules.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Microtúbulos/metabolismo , ARN Mensajero/metabolismo , Arsenitos/farmacología , Proteínas Portadoras , Citosol/metabolismo , ADN Helicasas , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Nocodazol/farmacología , Proteínas de Unión a Poli-ADP-Ribosa , Transporte de Proteínas , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Estabilidad del ARN
7.
Biochim Biophys Acta ; 1652(2): 126-35, 2003 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-14644048

RESUMEN

The activity of mammalian pyruvate dehydrogenase complex (PDC) is regulated by a phosphorylation/dephosphorylation cycle. Dephosphorylation accompanied by activation is carried out by two genetically different isozymes of pyruvate dehydrogenase phosphatase, PDP1c and PDP2c. Here, we report data showing that PDP1c and PDP2c display marked biochemical differences. The activity of PDP1c strongly depends upon the simultaneous presence of calcium ions and the E2 component of PDC. In contrast, the activity of PDP2c displays little, if any, dependence upon either calcium ions or E2. Furthermore, PDP2c does not appreciably bind to PDC under the conditions when PDP1c exists predominantly in the PDC-bound state. The stimulatory effect of E2 on PDP1c can be partially mimicked by a monomeric construct consisting of the inner lipoyl-bearing domain and the E1-binding domain of E2 component. This strongly suggests that the E2-mediated activation of PDP1c largely reflects the effects of co-localization and mutual orientation of PDP1c and E1 component facilitated by their binding to E2. Both PDP1c and PDP2c can efficiently dephosphorylate all three phosphorylation sites located on the alpha chain of the E1 component. For PDC phosphorylated at a single site, the relative rates of dephosphorylation of individual sites are: 2>site 3>site 1. Phosphorylation of sites 2 or 3 in addition to site 1 does not have a significant effect on the rates of dephosphorylation of individual sites by PDP1c, suggesting a random mechanism of dephosphorylation. In contrast, there is a significant decrease in the overall rate of dephosphorylation of pyruvate dehydrogenase by PDP2c under these conditions. This indicates that the mechanism of dephosphorylation of PDC phosphorylated at multiple sites by PDP2c is not purely random. These marked differences in the site-specificity displayed by PDP1c and PDP2c should be particularly important under conditions such as starvation and diabetes, which are associated with a great increase in phosphorylation of sites 2 and 3 of pyruvate dehydrogenase.


Asunto(s)
Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Acetilación , Animales , Sitios de Unión , Humanos , Isoenzimas , Cinética , Mutagénesis Sitio-Dirigida , Mutación , Fosforilación , Estructura Terciaria de Proteína , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/química , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Complejo Piruvato Deshidrogenasa/química , Complejo Piruvato Deshidrogenasa/genética , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia
8.
Cell Logist ; 4(3): e943597, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25610720

RESUMEN

Mitochondria regulate metabolism and homeostasis within cells. Mitochondria are also very dynamic organelles, constantly undergoing fission and fusion. The importance of maintaining proper mitochondrial dynamics is evident in the various diseases associated with defects in these processes. Protein kinase A (PKA) is a key regulator of mitochondrial dynamics. PKA is spatially regulated by A-Kinase Anchoring Proteins (AKAPs). We completed cloning of a novel AKAP350 isoform, AKAP350C. Immunostaining for endogenous AKAP350C showed localization to mitochondria. The carboxyl-terminal 54-amino acid sequence unique to AKAP350C contains a novel amphipathic alpha helical mitochondrial-targeting domain. AKAP350C co-localizes with Mff (mitochondrial fission protein) and mitofusins 1 and 2 (mitochondrial fusion proteins), and likely regulates mitochondrial dynamics by scaffolding PKA and mitochondrial fission and fusion proteins.

9.
PLoS One ; 6(11): e27699, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22110729

RESUMEN

Chemotherapeutics and other pharmaceuticals are common sources of cellular stress. Darinaparsin (ZIO-101) is a novel organic arsenical under evaluation as a cancer chemotherapeutic, but the drug's precise mechanism of action is unclear. Stress granule formation is an important cellular stress response, but the mechanisms of formation, maintenance, and dispersal of RNA-containing granules are not fully understood. During stress, small, diffuse granules initially form throughout the cytoplasm. These granules then coalesce near the nucleus into larger granules that disperse once the cellular stress is removed. Complete stress granule formation is dependent upon microtubules. Human cervical cancer (HeLa) cells, pre-treated with nocodazole for microtubule depolymerization, formed only small, diffuse stress granules upon sodium arsenite treatment. Darinaparsin, as a single agent, also induced the formation of small, diffuse stress granules, an effect similar to that of the combination of nocodazole with sodium arsenite. Darinaparsin inhibited the polymerization of microtubules both in vivo and in vitro. Interestingly, upon removal of darinaparsin, the small, diffuse stress granules completed formation with coalescence in the perinuclear region prior to disassembly. These results indicate that RNA stress granules must complete formation prior to disassembly, and completion of stress granule formation is dependent upon microtubules. Finally, treatment of cells with darinaparsin led to a reduction in Sonic hedgehog (Shh) stimulated activation of Gli1 and a loss of primary cilia. Therefore, darinaparsin represents a unique multivalent chemotherapeutic acting on stress induction, microtubule polymerization, and Shh signaling.


Asunto(s)
Antineoplásicos/farmacología , Arsenicales/farmacología , Glutatión/análogos & derivados , Proteínas Hedgehog/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Animales , Arsenitos/farmacología , Cilios/efectos de los fármacos , Cilios/metabolismo , Glutatión/farmacología , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Polimerizacion/efectos de los fármacos , Compuestos de Sodio/farmacología
10.
Proc Natl Acad Sci U S A ; 103(13): 4900-5, 2006 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-16547131

RESUMEN

Arrestins regulate signaling and trafficking of G protein-coupled receptors by virtue of their preferential binding to the phosphorylated active form of the receptor. To identify sites in arrestin involved in receptor interaction, a nitroxide-containing side chain was introduced at each of 28 different positions in visual arrestin, and the dynamics of the side chain was used to monitor arrestin interaction with phosphorylated forms of its cognate receptor, rhodopsin. At physiological concentrations, visual arrestin associates with both inactive dark phosphorylated rhodopsin (P-Rh) and light-activated phosphorylated rhodopsin (P-Rh*). Residues distributed over the concave surfaces of the two arrestin domains are involved in weak interactions with both states of phosphorhodopsin, and the flexible C-terminal sequence (C-tail) of arrestin becomes dynamically disordered in both complexes. A large-scale movement of the C-tail is demonstrated by direct distance measurements using a doubly labeled arrestin with one nitroxide in the C-tail and the other in the N-domain. Despite some overlap, the molecular "footprint" of arrestin bound to P-Rh and P-Rh* is different, showing the structure of the complexes to be unique. Strong immobilizing interactions with residues in a highly flexible loop between beta-strands V and VI are only observed in complex with the activated state. This result identifies this loop as a key recognition site in the arrestin-P-Rh* complex and supports the view that flexible sequences are key elements in protein-protein interactions.


Asunto(s)
Arrestina/química , Arrestina/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Arrestina/genética , Cisteína/genética , Cisteína/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Mutación , Fosforilación , Unión Proteica , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA