Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Magn Reson Med ; 92(3): 1115-1127, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38730562

RESUMEN

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.


Asunto(s)
Encéfalo , Colaboración de las Masas , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Fantasmas de Imagen , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Mapeo Encefálico/métodos , Masculino , Femenino , Adulto , Algoritmos
2.
J Appl Clin Med Phys ; : e14430, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38952071

RESUMEN

PURPOSE: The purpose of this work was to detail our center's experience in transitioning from a Co-60 treatment technique to an intensity modulated radiation therapy (IMRT) based lateral-field extended source-to-axis distance (e-SAD) technique for total body irradiation (TBI). MATERIALS AND METHODS: An existing beam model in RayStation v.10A was validated for the use of e-SAD TBI treatments. Data were acquired with an Elekta Synergy linear accelerator (LINAC) at an extended source-to-surface distance of 365 cm with an 18 MV beam. Beam model validation measurements included percentage depth dose (PDD), profile data, surface dose, build-up region and transmission measurements. End-to-end testing was carried out using an anthropomorphic phantom. Treatments were performed in a supine position in a whole-body Vac-Lok at an e-SAD of 400 cm with a beam spoiler 10 cm from the couch. Planning was achieved using IMRT, where multi-leaf collimators were used to modulate the beam and shield the organs at risk. Beam's eye view projection images were used for in-room patient positioning and in-vivo dosimetry was performed for every treatment. RESULTS: The percent difference between the measured and calculated PDD and profiles was less than 2% at all locations. Surface dose was 83.8% of the maximum dose with the beam spoiler at a 10 cm distance from the phantom. The largest percent difference between the treatment planning system (TPS) and measured data within the anthropomorphic phantom was approximately 2%. In-vivo dosimetry measurements yielded results within the 5% institutional threshold. CONCLUSION: In 2022, 17 patients were successfully treated using the new IMRT-based lateral-field e-SAD TBI technique. The resulting clinical plans respected the institutional standard. The commissioning process, as well as the treatment planning and delivery aspects were described in this work with the intention of supporting other clinics in implementing this treatment method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA