RESUMEN
The human body consists of various systems (blood, tissues, extracellular fluid, intracellular contents) separated by biological membranes. Physiological barriers ensure the physico-chemical composition of the internal environment remains constant and protects the body from environmental changes. The permeability of the histohematic barrier depends on the concentration of substances in the blood, the body's condition, external influences, and a number of other reasons caused by stimuli coming from the external or internal environment. Information about the state of the regulatory systems of the body has its effect on specific chemoreceptors, which leads to the emergence of local and general physiological and biochemical processes. According to their localization, they distinguish between the hematoencephalic, hemato-placental, hemato-ophthalmic, and hemato-salivary barriers. Recently, the hematosalivary barrier, through which the selective entry of substances from the blood into the oral fluid is carried out, has taken a special place in the study. Its functioning depends on the processes occurring in the body, which is carried out by selective permeability for substances that determine the composition of the main internal environment of the body - blood. Hematosalivary barrier is an important link in maintaining homeostasis, which is reflected in the metabolic parameters of oral fluid.
Asunto(s)
Placenta , Femenino , Homeostasis , Humanos , EmbarazoRESUMEN
Oral fluid is an alternative biological material that confirms correlations with blood parameters in various pathological conditions of the body. In order to find a non-invasive approach to stratification of patients with COVID-19 disease, molecular biomarkers of the oral fluid have been determined in patients with moderate coronavirus infection in comparison with clinically healthy individuals. It has been shown that proteomic, carbohydrate, macro- and microelement profiles of the oral fluid in coronavirus infection can be used for diagnostics. The features of protein metabolism were revealed: an increase in the content of total protein, urea; increased activity of enzymes aspartate aminotransferase, gamma glutamyl transpeptidase, creatine phosphokinase, alkaline phosphatase; changes in carbohydrate metabolism, which is expressed by an increase in glucose and lactate levels, an increase in lactate dehydrogenase activity, sodium, chloride, calcium, magnesium, iron content.
Asunto(s)
COVID-19 , Infecciones por Coronavirus , Coronavirus , Aspartato Aminotransferasas , Humanos , Proteómica , SARS-CoV-2RESUMEN
AB0 blood group antigens were discovered over a century ago; however, it is still important to study their role in development of various pathological conditions. Today it is known that antigenic determinants of this blood group are present not only on erythrocyte membrane but also on other cells and tissues: platelets, gastrointestinal epithelium and salivary glands, respiratory system cells. In the last decade, a large number of studies have appeared to reveal the relationship between a specific disease and blood group type, meta-analyses have been published. Previously, the authors have studied the metabolic status, cell composition and coagulation profile of clinically healthy individuals for more than on 180,000 donations, that allowed to identify groupspecific features for each blood group. This review presents generalized data on the association of such pathological conditions as coronary heart disease, thromboembolic complications, tumors of various localizations, inflammatory and destructive oral diseases, psychiatric and some infectious diseases with the presence or absence of antigenic determinants A and B. Carriers of blood group 0 (I) are generally more resistant to diseases, with the exception of H.pylori-associated gastrointestinal diseases. Carriers of «antigenic¼ blood groups A (II), B (III), AB (IV) are more susceptible to development of infectious, cardiovascular and cancer diseases. The presented data demonstrate clinical significance of the definition of group typing not only for selection of blood and its components during transfusion and transplantation, but also for diagnostics, determination of risk group and tactics for treatment patients with different nosologies.
Asunto(s)
Antígenos de Grupos Sanguíneos , Enfermedades Cardiovasculares/sangre , Enfermedades Transmisibles/sangre , Neoplasias/sangre , Resistencia a la Enfermedad , HumanosRESUMEN
The paper focuses on intermolecular interactions, particularly interactions between proteins and natural intermediates (small molecules). Molecules with a molecular weight of up to 1000 Da are free in cytoplasmic solution and form a pool of intermediates. Methods of computer modeling for prediction of protein-proteinaceous, protein-ligand, protein - a small molecule of interactions are presented. The program for modeling predicted biological activity in silico is Prediction of Activity Spectrum for Substances (PASS). In the Search Tool for Interacting Chemicals (STITCH) system, it is possible to identify potential protein interaction partners for small molecules. A review of the literature presents modern data on small molecules - metabolic switches, such as α-glycerophosphatedihydroxyacetone phosphate, pyruvate-lactate, oxaloacetate-malate. The molecules we study have different and multiple effects on metabolism and on intercellular interaction systems. Natural intermediates are at the intersection of metabolic pathways of metabolism of proteins, carbohydrates, lipids; they are signal molecules, participate in regulation of protein function, gene expression, enzyme activity. An increasing interest in deciphering protein-small molecule/metabolite interactions at the systemic level will lay a conceptual foundation that provides insight into complex epigenetic regulation under various environmental influences. A complete interplay, including a protein-small molecule interaction, will be crucial to eventually unraveling the complex relationships between the genotype and phenotype and to provide a deeper understanding of health and disease.
Asunto(s)
Epigénesis Genética , Redes y Vías Metabólicas , Proteínas , Carbohidratos , Simulación por Computador , Humanos , Ligandos , Lípidos , Modelos Químicos , Mapeo de Interacción de ProteínasRESUMEN
Using the ABO antibody-antigen model the influence of natural metabolite pyruvate on the antibody interaction with of erythrocyte antigens, defining their group specificity has been investigated. Before agglutination reaction erythrocytes of A(II)-AB(IV) blood groups, monoclonal anti-A and anti-B antibodies were incubated with sodium pyruvate. Visualization of agglutinates was performed by means of flow cytometry and laser scanning confocal microscopy. Computer-aided prediction of the spectrum of biological activity of pyruvate by a PASS program proposed major regulatory pathways, in which pyruvate may be involved. It has been demonstrated that pyruvate can regulate the intensity of antigen-antibody interaction. These results suggest the possibility of using small molecules, for example pyruvate, as molecular probes and prospects of the use of erythrocytes with antigenic determinants of the ABO system expressed on their membranes for studies of protein-protein interactions due to convenient visualization and possibility of quantitative evaluation of this process.