Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35132990

RESUMEN

Despite previous intensive investigations on epiblast cell migration in avian embryos during primitive streak development before stage (st.) 4, this migration at later stages of brain development has remained uninvestigated. By live imaging of epiblast cells sparsely labeled with green fluorescence protein, we investigated anterior epiblast cell migration to form individual brain portions. Anterior epiblast cells from a broad area migrated collectively towards the head axis during st. 5-7 at a rate of 70-110 µm/h, changing directions from diagonal to parallel and forming the brain portions and abutting head ectoderm. This analysis revised the previously published head portion precursor map in anterior epiblasts at st. 4/5. Grafting outside the brain precursor region of mCherry-expressing nodes producing anterior mesendoderm (AME) or isolated AME tissues elicited new cell migration towards ectopic AME tissues. These locally convergent cells developed into secondary brains with portions that depended on the ectopic AME position in the anterior epiblast. Thus, anterior epiblast cells are bipotent for brain/head ectoderm development with given brain portion specificities. A brain portion potential map is proposed, also accounting for previous observations.


Asunto(s)
Gástrula , Estratos Germinativos , Animales , Aves , Encéfalo , Movimiento Celular , Ectodermo/metabolismo
2.
Genes Cells ; 25(4): 242-256, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31997540

RESUMEN

The transcription factor (TF) SOX2 regulates various stem cells and tissue progenitors via functional interactions with cell type-specific partner TFs that co-bind to enhancer sequences. Neural progenitors are the major embryonic tissues where SOX2 assumes central regulatory roles. In order to characterize the partner TFs of SOX2 in neural progenitors, we investigated the regulation of the D1 enhancer of the Sox2 gene, which is activated in the embryonic neural tube (NT) and neural crest (NC), using chicken embryo electroporation. We identified essential TF binding sites for a SOX, and two ZIC TFs in the activation of the D1 enhancer. By comparison of dorso-ventral and antero-posterior patterns of D1 enhancer activation, and the effect of mutations on the enhancer activation patterns with TF expression patterns, we determined SOX2 and ZIC2 as the major D1 enhancer-activating TFs. Binding of these TFs to the D1 enhancer sequence was confirmed by chromatin immunoprecipitation analysis. The combination of SOX2 and ZIC2 TFs activated the enhancer in both the NT and NC. These results indicate that SOX2 and ZIC2, which have been known to play major regulatory roles in neural progenitors, do functionally cooperate. In addition, the recently demonstrated SOX2 expression during the NC development is accounted for at least partly by the D1 enhancer activity. Deletion of the D1 enhancer sequence from the mouse genome, however, did not affect the mouse development, indicating functional redundancies of other enhancers.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Cresta Neural/metabolismo , Tubo Neural/metabolismo , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/metabolismo , Animales , Embrión de Pollo , Pollos , Embrión de Mamíferos/metabolismo , Ratones , Factores de Transcripción SOXB1/genética
3.
Nature ; 521(7551): 217-221, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25778702

RESUMEN

Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D'Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues.


Asunto(s)
Tamaño Corporal/genética , Proteínas de Peces/metabolismo , Morfogénesis/genética , Oryzias/anatomía & histología , Oryzias/embriología , Actomiosina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Proteínas de Peces/genética , Proteínas Activadoras de GTPasa/metabolismo , Genes Esenciales/genética , Gravitación , Humanos , Mutación/genética , Tamaño de los Órganos/genética , Oryzias/genética , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Esferoides Celulares/citología , Esferoides Celulares/metabolismo
4.
Dev Dyn ; 249(12): 1425-1439, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32633438

RESUMEN

BACKGROUND: Hedgehog signaling has various regulatory functions in tissue morphogenesis and differentiation. To investigate its involvement in anterior pituitary precursor development and the lens precursor potential for anterior pituitary precursors, we investigated Talpid mutant Japanese quail embryos, in which hedgehog signaling is defective. RESULTS: Talpid mutants develop multiple pituitary precursor-like pouches of variable sizes from the oral ectoderm (OE). The ectopic pituitary pouches initially express the pituitary-associated transcription factor (TF) LHX3 similarly to Rathke's pouch, the genuine pituitary precursor. The pouches coexpress the TFs SOX2 and PAX6, a signature of lens developmental potential. Most Talpid mutant pituitary pouches downregulate LHX3 expression and activate the lens-essential TF PROX1, leading to the development of small lens tissue expressing α-, ß-, and δ-crystallins. In contrast, mutant Rathke's pouches express a lower level of LHX3, which is primarily localized in the cytoplasm, and activate the lens developmental pathway. CONCLUSIONS: Hedgehog signaling in normal embryos regulates the development of Rathke's pouch in two steps. First, by confining Rathke's pouch development in a low hedgehog signaling region of the OE. Second, by sustaining LHX3 activity to promote anterior pituitary development, while inhibiting ectopic lens development.


Asunto(s)
Ectodermo/embriología , Desarrollo Embrionario/fisiología , Proteínas Hedgehog/metabolismo , Factor de Transcripción PAX6/metabolismo , Hipófisis/embriología , Factores de Transcripción SOXB1/metabolismo , Animales , Diferenciación Celular/fisiología , Coturnix , Ectodermo/metabolismo , Organogénesis/fisiología , Hipófisis/metabolismo , Transducción de Señal/fisiología
5.
Development ; 144(10): 1737-1739, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28446520

RESUMEN

Hisato Kondoh and Harukazu Nakamura look back at the life and career of their mentor Tokindo S. Okada, a pioneer of Japanese developmental biology.


Asunto(s)
Biología Evolutiva/historia , Investigadores , Anfibios , Animales , Aves , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Cooperación Internacional/historia , Japón , Investigadores/historia
6.
Development ; 144(11): 1948-1958, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28455373

RESUMEN

To obtain insight into the transcription factor (TF)-dependent regulation of epiblast stem cells (EpiSCs), we performed ChIP-seq analysis of the genomic binding regions of five major TFs. Analysis of in vivo biotinylated ZIC2, OTX2, SOX2, POU5F1 and POU3F1 binding in EpiSCs identified several new features. (1) Megabase-scale genomic domains rich in ZIC2 peaks and genes alternate with those rich in POU3F1 but sparse in genes, reflecting the clustering of regulatory regions that act at short and long-range, which involve binding of ZIC2 and POU3F1, respectively. (2) The enhancers bound by ZIC2 and OTX2 prominently regulate TF genes in EpiSCs. (3) The binding sites for SOX2 and POU5F1 in mouse embryonic stem cells (ESCs) and EpiSCs are divergent, reflecting the shift in the major acting TFs from SOX2/POU5F1 in ESCs to OTX2/ZIC2 in EpiSCs. (4) This shift in the major acting TFs appears to be primed by binding of ZIC2 in ESCs at relevant genomic positions that later function as enhancers following the disengagement of SOX2/POU5F1 from major regulatory functions and subsequent binding by OTX2. These new insights into EpiSC gene regulatory networks gained from this study are highly relevant to early stage embryogenesis.


Asunto(s)
Inmunoprecipitación de Cromatina , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Estratos Germinativos/citología , Células Madre Embrionarias de Ratones/metabolismo , Análisis de Secuencia de ARN , Factores de Transcripción/metabolismo , Animales , Sitios de Unión/genética , Biotinilación , Genoma , Estratos Germinativos/metabolismo , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción Otx/metabolismo , Unión Proteica , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/genética
7.
Dev Growth Differ ; 62(4): 243-259, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32277710

RESUMEN

Endoderm precursors expressing FoxA2 and Sox17 develop from the epiblast through the gastrulation process. In this study, we developed an experimental system to model the endoderm-generating gastrulation process using epiblast stem cells (EpiSCs). To this end, we established an EpiSC line i22, in which enhanced green fluorescent protein is coexpressed with Foxa2. Culturing i22 EpiSCs as aggregates for a few days was sufficient to initiate Foxa2 expression, and further culturing of the aggregates in Matrigel promoted the sequential activation of transcription factor genes involved in endoderm precursor development, e.g., Eomes, Gsc, and Sox17. In aggregation culture of i22 cells for 3 days, all cells expressed POU5F1, SOX2, and E-cadherin, a signature of the epiblast, whereas expression of GATA4 and SOX17 was also activated moderately in dispersed cells, suggesting priming of these cells to endodermal development. Embedding the aggregates in Matrigel for further 3 days elicited migration of the cells into the lumen of laminin-rich matrices covering the aggregates, in which FOXA2 and SOX17 were expressed at a high level with the concomitant loss of E-cadherin, indicating the migratory phase of endodermal precursors. Prolonged culturing of the aggregates generated three segregating cell populations found in post-gastrulation stage embryos: (1) definitive endoderm co-expressing high SOX17, GATA4, and E-cadherin, (2) mesodermal cells expressing a low level of GATA4 and lacking E-cadherin, and (3) primed epiblast cells expressing POU5F1, SOX2 without E-cadherin. Thus, aggregation of EpiSCs followed by embedding of aggregates in the laminin-rich matrix models the gastrulation-dependent endoderm precursor development.


Asunto(s)
Endodermo/citología , Matriz Extracelular/metabolismo , Estratos Germinativos/citología , Modelos Biológicos , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Animales , Endodermo/metabolismo , Estratos Germinativos/metabolismo , Ratones , Ratones Endogámicos DBA
8.
Dev Biol ; 433(1): 61-74, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29137924

RESUMEN

Transcription factor gene Sox2 is expressed throughout sensory development, but the enhancers that regulate the gene vary depending on the developmental stages and tissues. To gain new insights into the gene regulatory network in sensory placode specification, regulation of the nasal-otic bispecific NOP1 enhancer of Sox2 was investigated in chicken embryos. Deletion and mutational analyses using electroporation showed that transcriptional repression mechanisms in combination with activation mechanisms determine placodal specificity. Activation of the NOP1 enhancer involves synergistic action by Sall4 and SoxB1/SoxE factors that bind to the adjacent sites. Deletion of repressive elements resulted in widening of the tissue area for enhancer activity to a region where the expression of Sall4 and SoxB1/E overlaps, e.g., the CNS and neural crest. Among multiple repressive elements that contribute to the placodal confinement of the NOP1 enhancer activity, CACCT/CACCTG motifs bound by Zeb/Snail family repressors play important roles. Overexpression of δEF1 (Zeb1) or Snail2 (Slug) strongly inhibited NOP1 activity. These data indicate that both activation by Sall4-Sox synergism and multiple repression mechanisms involving Zeb/Snail factors are essential for Sox2 regulation to be confined to the nasal and otic placodes.


Asunto(s)
Factores de Transcripción SOXB1/metabolismo , Animales , Embrión de Pollo , Pollos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Cresta Neural/metabolismo , Neuronas , Elementos Reguladores de la Transcripción , Represión Psicológica , Factores de Transcripción SOXB1/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Development ; 143(15): 2829-41, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27385012

RESUMEN

The transcription factor Sip1 (Zeb2) plays multiple roles during CNS development from early acquisition of neural fate to cortical neurogenesis and gliogenesis. In humans, SIP1 (ZEB2) haploinsufficiency leads to Mowat-Wilson syndrome, a complex congenital anomaly including intellectual disability, epilepsy and Hirschsprung disease. Here we uncover the role of Sip1 in retinogenesis. Somatic deletion of Sip1 from mouse retinal progenitors primarily affects the generation of inner nuclear layer cell types, resulting in complete loss of horizontal cells and reduced numbers of amacrine and bipolar cells, while the number of Muller glia is increased. Molecular analysis places Sip1 downstream of the eye field transcription factor Pax6 and upstream of Ptf1a in the gene network required for generating the horizontal and amacrine lineages. Intriguingly, characterization of differentiation dynamics reveals that Sip1 has a role in promoting the timely differentiation of retinal interneurons, assuring generation of the proper number of the diverse neuronal and glial cell subtypes that constitute the functional retina in mammals.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Retina/citología , Retina/metabolismo , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula , Inmunoprecipitación de Cromatina , Femenino , Técnica del Anticuerpo Fluorescente , Ratones , Proteínas del Tejido Nervioso/genética , Neurogénesis/genética , Neurogénesis/fisiología , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Embarazo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Dev Biol ; 421(2): 118-125, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27845051

RESUMEN

Embryonic neural retinas of avians produce lenses under spreading culture conditions. This phenomenon has been regarded as a paradigm of transdifferentiation due to the overt change in cell type. Here we elucidated the underlying mechanisms. Retina-to-lens transdifferentiation occurs in spreading cultures, suggesting that it is triggered by altered cell-cell interactions. Thus, we tested the involvement of Notch signaling based on its role in retinal neurogenesis. Starting from E8 retina, a small number of crystallin-expressing lens cells began to develop after 20 days in control spreading cultures. By contrast, addition of Notch signal inhibitors to cultures after day 2 strongly promoted lens development beginning at day 11, and a 10-fold increase in δ-crystallin expression level. After Notch signal inhibition, transcription factor genes that regulate the early stage of eye development, Prox1 and Pitx3, were sequentially activated. These observations indicate that the lens differentiation potential is intrinsic to the neural retina, and this potential is repressed by Notch signaling during normal embryogenesis. Therefore, Notch suppression leads to lens transdifferentiation by disinhibiting the neural retina-intrinsic program of lens development.


Asunto(s)
Transdiferenciación Celular , Cristalino/citología , Receptores Notch/metabolismo , Retina/citología , Transducción de Señal , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Inhibidores Enzimáticos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Immunoblotting , Cristalino/efectos de los fármacos , Modelos Biológicos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Dev Growth Differ ; 60(3): 133-145, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29520762

RESUMEN

To elucidate the transcriptional regulation that underlies specification of the otic placode, we investigated the Sox3 downstream enhancer Otic1 of the chicken, the activity of which is restricted to and distributed across the entire otic placode. The 181-bp Otic1 enhancer sequence was dissected into a 68-bp minimal activating sequence, which exhibited dimer enhancer activity in the otic placode and cephalic neural crest, and this was further reduced to a 25-bp Otic1 core sequence, which also showed octamer enhancer activity in the same regions. The Otic1 core octamer was activated by the combined action of Sall4 and the SoxE transcription factors (TFs) Sox8 or Sox9. Binding of Sall4, Sox8 and Sox9 to the Otic1 sequence in embryonic tissues was confirmed by ChIP-qPCR analysis. The core-adjoining 3' side sequences of Otic1 augmented its enhancer activity, while inclusion of the CAGGTG sequence in the immediate 3' end of the 68-bp sequence repressed its enhancer activity outside the otic placode. The CAGGTG sequence likely serves as the binding sites of the repressor TFs δEF1 (Zeb1), Sip1 (Zeb2), and Snail2, all of which are expressed in the cephalic neural crest but not in the otic placode. Therefore, the combination of Sall4-Sox8-dependent activation and CAGGTG sequence-dependent repression determines otic placode development. Although the Otic1 sequence is not conserved in mammals or fishes, the activation mechanism is, as Otic1 was also activated in otic placode tissues developed from mouse embryonic stem cells and transient transgenic zebrafish embryos.


Asunto(s)
Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXE/metabolismo , Animales , Pollos , Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo
12.
Adv Exp Med Biol ; 1046: 339-351, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29442330

RESUMEN

Pioneered by the classical mouse embryonic stem cells (ESCs), various stem cell lines representing the peri- and postimplantation stages of embryogenesis have been established. To gain insight into the gene regulatory network operating in these cells, we first investigated epiblast stem cells (EpiSCs), performing ChIP-seq analysis for five major transcription factors (TFs) involved in epiblast regulation. The analysis indicated that SOX2-POU5F1 TF pairs highlighted in mouse ESCs are not the major players in other stem cells. The major acting transcription factors shift from SOX2/POU5F1 in mouse ESCs to ZIC2/OTX2 in EpiSCs, and this shift is primed in ESCs by binding of ZIC2 at relevant genomic positions that later function as enhancers.


Asunto(s)
Elementos de Facilitación Genéticos/fisiología , Regulación de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Células Madre Embrionarias de Ratones/metabolismo , Factores de Transcripción/metabolismo , Animales , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Factores de Transcripción/genética
13.
Genes Cells ; 21(6): 661-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27030109

RESUMEN

The canonical Wnt signaling pathway plays a major role in the regulation of embryogenesis and organogenesis, where signal strength-dependent cellular responses are of particular importance. To assess Wnt signal levels in individual cells, and to circumvent the integration site-dependent bias shown in previous Wnt reporter lines, we constructed a new Wnt signal reporter mouse line R26-WntVis. Heptameric TCF/LEF1 binding sequences were combined with a viral minimal promoter to confer a graded response to the reporter depending on Wnt signal strengths. The histone H2B-EGFP fusion protein was chosen as the fluorescent reporter to facilitate single-cell resolution analyses. This WntVis reporter gene was then inserted into the ROSA26 locus in an orientation opposite to that of the endogenous gene. The R26-WntVis allele was introduced into Wnt3a(-/-) and Wnt3a(vt/-) mutant mouse embryos and compared with wild-type embryos to assess its performance. The R26-WntVis reporter was activated in known Wnt-dependent tissues and responded in a graded fashion to signal intensity. This analysis also indicated that the major Wnt activity early in embryogenesis switched from Wnt3 to Wnt3a around E7.5. The R26-WntVis mouse line will be widely useful for the study of Wnt signal-dependent processes.


Asunto(s)
Embrión de Mamíferos/metabolismo , Genes Reporteros , Ratones Transgénicos/genética , Vía de Señalización Wnt , Animales , Gástrula/metabolismo , Expresión Génica , Ratones , Proteínas Wnt/metabolismo
14.
Nature ; 470(7334): 394-8, 2011 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21331042

RESUMEN

The classical view of neural plate development held that it arises from the ectoderm, after its separation from the mesodermal and endodermal lineages. However, recent cell-lineage-tracing experiments indicate that the caudal neural plate and paraxial mesoderm are generated from common bipotential axial stem cells originating from the caudal lateral epiblast. Tbx6 null mutant mouse embryos which produce ectopic neural tubes at the expense of paraxial mesoderm must provide a clue to the regulatory mechanism underlying this neural versus mesodermal fate choice. Here we demonstrate that Tbx6-dependent regulation of Sox2 determines the fate of axial stem cells. In wild-type embryos, enhancer N1 of the neural primordial gene Sox2 is activated in the caudal lateral epiblast, and the cells staying in the superficial layer sustain N1 activity and activate Sox2 expression in the neural plate. In contrast, the cells destined to become mesoderm activate Tbx6 and turn off enhancer N1 before migrating into the paraxial mesoderm compartment. In Tbx6 mutant embryos, however, enhancer N1 activity persists in the paraxial mesoderm compartment, eliciting ectopic Sox2 activation and transforming the paraxial mesoderm into neural tubes. An enhancer-N1-specific deletion mutation introduced into Tbx6 mutant embryos prevented this Sox2 activation in the mesodermal compartment and subsequent development of ectopic neural tubes, indicating that Tbx6 regulates Sox2 via enhancer N1. Tbx6-dependent repression of Wnt3a in the paraxial mesodermal compartment is implicated in this regulatory process. Paraxial mesoderm-specific misexpression of a Sox2 transgene in wild-type embryos resulted in ectopic neural tube development. Thus, Tbx6 represses Sox2 by inactivating enhancer N1 to inhibit neural development, and this is an essential step for the specification of paraxial mesoderm from the axial stem cells.


Asunto(s)
Linaje de la Célula , Mesodermo/citología , Células-Madre Neurales/citología , Tubo Neural/citología , Factores de Transcripción SOXB1/metabolismo , Células Madre/citología , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Coristoma/embriología , Coristoma/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Datos de Secuencia Molecular , Placa Neural/citología , Placa Neural/embriología , Placa Neural/metabolismo , Tubo Neural/embriología , Tubo Neural/metabolismo , Factores de Transcripción SOXB1/genética , Proteínas de Dominio T Box , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/metabolismo , Proteína Wnt3 , Proteína Wnt3A
15.
Development ; 140(20): 4129-44, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24086078

RESUMEN

Sox transcription factors play widespread roles during development; however, their versatile funtions have a relatively simple basis: the binding of a Sox protein alone to DNA does not elicit transcriptional activation or repression, but requires binding of a partner transcription factor to an adjacent site on the DNA. Thus, the activity of a Sox protein is dependent upon the identity of its partner factor and the context of the DNA sequence to which it binds. In this Primer, we provide an mechanistic overview of how Sox family proteins function, as a paradigm for transcriptional regulation of development involving multi-transcription factor complexes, and we discuss how Sox factors can thus regulate diverse processes during development.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Factores de Transcripción SOX/metabolismo , Células Madre/citología , Animales , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/metabolismo , MicroARNs/metabolismo , Células Madre/metabolismo , Activación Transcripcional
16.
Dev Growth Differ ; 58(5): 427-36, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27279156

RESUMEN

The transcription factor gene Sox2, centrally involved in neural primordial regulation, is activated by many enhancers. During the early stages of embryonic development, Sox2 is regulated by the enhancers N2 and N1 in the anterior neural plate (ANP) and posterior neural plate (PNP), respectively. This differential use of the enhancers reflects distinct regulatory mechanisms underlying the genesis of ANP and PNP. The ANP develops directly from the epiblast, triggered by nodal signal inhibition, and via the combined action of TFs SOX2, OTX2, POU3F1, and ZIC2, which promotes the the ANP development and inhibits other cell lineages. In contrast, the PNP is derived from neuromesodermal bipotential axial stem cells that develop into the neural plate when Sox2 is activated by the N1 enhancer, whereas they develop into the paraxial mesoderm when the N1 enhancer is repressed by the action of TBX6. The axial stem cells are maintained by the activity of WNT3a and T (Brachyury). However, at axial levels more anterior to the 8th somites (cervical levels), the development of both the neural plate and somite proceeds in the absence of WNT3a, T, or TBX6. These observations indicate that distinct molecular and cellular mechanisms determine neural plate genesis based on the axial level, and contradict the classical concept of the term "neural induction," which assumes a pan-neural plate mechanism.


Asunto(s)
Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Placa Neural/embriología , Factores de Transcripción/metabolismo , Animales , Embrión de Mamíferos/citología , Humanos , Placa Neural/citología , Factores de Transcripción/genética
17.
Dev Growth Differ ; 58(2): 205-14, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26691438

RESUMEN

The vertebrate Zfhx1 transcription factor family comprises δEF1 and Sip1, which bind to CACCT-containing sequences and act as transcriptional repressors. It has been a longstanding question whether these transcription factors share the same regulatory functions in vivo. It has been shown that neural crest (NC) delamination depends on the Sip1 activity at the cranial level in mouse and chicken embryos, and it remained unclear how NC delamination is regulated at the trunk level. We observed that the expression of δEF1 and Sip1 overlaps in many tissues in chicken embryos, including NC cells at the trunk level. To clarify the above questions, we separately knocked down δEF1 and Sip1 or in combination in NC cells by electroporation of vectors expressing short hairpin RNAs (shRNAs) against respective mRNAs on the dorsal side of neural tubes that generate NC cells. In all cases, the migrating NC cell population was significantly reduced, paralleled by the decreased expression of δEF1 or Sip1 targeted by shRNAs. Expression of Sox10, the major transcription factor that regulates NC development, was also decreased by the shRNAs against δEF1 or Sip1. We conclude that the trunk NC delamination is regulated by both δEF1 and Sip1 in an analogous manner, and that these transcription factors can share equivalent regulatory functions in embryonic tissues.


Asunto(s)
Proteínas Aviares/metabolismo , Movimiento Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Cresta Neural/embriología , Factores de Transcripción/metabolismo , Animales , Embrión de Pollo , Ratones , Cresta Neural/citología
18.
Development ; 139(21): 3926-37, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22992956

RESUMEN

Somatic development initiates from the epiblast in post-implantation mammalian embryos. Recent establishment of epiblast stem cell (EpiSC) lines has opened up new avenues of investigation of the mechanisms that regulate the epiblast state and initiate lineage-specific somatic development. Here, we investigated the role of cell-intrinsic core transcriptional regulation in the epiblast and during derivation of the anterior neural plate (ANP) using a mouse EpiSC model. Cells that developed from EpiSCs in one day in the absence of extrinsic signals were found to represent the ANP of ~E7.5 embryos. We focused on transcription factors that are uniformly expressed in the E6.5 epiblast but in a localized fashion within or external to the ANP at E7.5, as these are likely to regulate the epiblast state and ANP development depending on their balance. Analyses of the effects of knockdown and overexpression of these factors in EpiSCs on the levels of downstream transcription factors identified the following regulatory functions: cross-regulation among Zic, Otx2, Sox2 and Pou factors stabilizes the epiblastic state; Zic, Otx2 and Pou factors in combination repress mesodermal development; Zic and Sox2 factors repress endodermal development; and Otx2 represses posterior neural plate development. All of these factors variably activate genes responsible for neural plate development. The direct interaction of these factors with enhancers of Otx2, Hesx1 and Sox2 genes was demonstrated. Thus, a combination of regulatory processes that suppresses non-ANP lineages and promotes neural plate development determines the ANP.


Asunto(s)
Redes Reguladoras de Genes/fisiología , Estratos Germinativos/citología , Placa Neural/embriología , Placa Neural/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Células Cultivadas , Femenino , Redes Reguladoras de Genes/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Transgénicos , Placa Neural/citología , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
19.
Genes Cells ; 19(5): 374-85, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24520934

RESUMEN

Development of the anterior forebrain precursor (AFBP) in the anterior neural plate (ANP) depends on the activation of the Hesx1 transcription factor gene. The Hesx1-expression domain of the ANP is underlain by Dkk1-expressing tissues, initially proximal-most anterior visceral endoderm (AVE), and later anterior mesendoderm (AME). As Dkk1-null embryos fail to develop the Hesx1-expressing domain, it is likely that Wnt signal inhibition in the ANP is required for the Hesx1 activation. To investigate the regulation of the AFBP development, we took advantage of epiblast stem cells (EpiSCs), which develop into the ANP in the absence of activin signaling. Expression of Hesx1 and Six3, both involved in the AFBP development, was strongly activated 2 days after activin removal and concomitant addition of Wnt signal inhibitors, Dkk1 or XAV939. Furthermore, we showed that activation of the 720-bp Hesx1 5' enhancer is responsible for Hesx1 expression in the AFBP and depends on Wnt signal inhibition. In addition, we showed that Wnt inhibition during the first day has larger impact on the activation of Hesx1 and Six3 than the second day, suggesting that in embryos Wnt inhibition caused by the AVE-derived Dkk1, rather than the AME-derived Dkk1, contributes greatly in the establishment of the AFBP.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Prosencéfalo/embriología , Proteínas Represoras/metabolismo , Proteínas Wnt/metabolismo , Región de Flanqueo 5' , Animales , Secuencia de Bases , Línea Celular , Elementos de Facilitación Genéticos , Proteínas del Ojo/metabolismo , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Proteínas de Homeodominio/genética , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Prosencéfalo/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Células Madre/citología , Proteína Homeobox SIX3
20.
Dev Growth Differ ; 57(1): 24-39, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25431100

RESUMEN

The transcription factor Sox2 plays a central role in the regulation of neuro-sensory development, and many other developmental processes. To gain an in depth understanding of the Sox2 gene regulation, we previously investigated the Sox2-proximal 50-kb region of the chicken genome to determine enhancers based on functional assays using chicken embryo electroporation. We identified 11 enhancers with specificity for neuro-sensory tissues. In this study, we extended the analysis of Sox2 locus-associated enhancers to a 200-kb region and identified 16 additional enhancers with functions in neuro-sensory development. These enhancers roughly correspond to a fraction of the sequence blocks that are highly conserved between chicken and mammalian genomes. The neural enhancers were activated in sequence, thereby creating a complex pattern of functional overlaps in the developing central nervous system (CNS). The variations in the specificities of the sensory enhancers also reflected the intermediate steps of sensory tissue development. This study provides an example where a single transcription factor gene has numerous regulatory elements that allow it to fulfill many functional roles in different biological contexts.


Asunto(s)
Proteínas Aviares/genética , Pollos/genética , Mapeo Cromosómico , Elementos de Facilitación Genéticos , Sitios Genéticos/fisiología , Genoma/fisiología , Factores de Transcripción SOXB1/genética , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA