Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(50): 27415-27423, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38078702

RESUMEN

Synchronized conversion of CO2 and H2O into hydrocarbons and oxygen via infrared-ignited photocatalysis remains a challenge. Herein, the hydroxyl-coordinated single-site Ru is anchored precisely on the metallic TiN surface by a NaBH4/NaOH reforming method to construct an infrared-responsive HO-Ru/TiN photocatalyst. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (ac-HAADF-STEM) and X-ray absorption spectroscopy (XAS) confirm the atomic distribution of the Ru species. XAS and density functional theory (DFT) calculations unveil the formation of surface HO-RuN5-Ti Lewis pair sites, which achieves efficient CO2 polarization/activation via dual coordination with the C and O atoms of CO2 on HO-Ru/TiN. Also, implanting the Ru species on the TiN surface powerfully boosts the separation and transfer of photoinduced charges. Under infrared irradiation, the HO-Ru/TiN catalyst shows a superior CO2-to-CO transformation activity coupled with H2O oxidation to release O2, and the CO2 reduction rate can further be promoted by about 3-fold under simulated sunlight. With the key reaction intermediates determined by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and predicted by DFT simulations, a possible photoredox mechanism of the CO2 reduction system is proposed.

2.
iScience ; 27(5): 109658, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38646174

RESUMEN

The electrochemical reduction of CO2 is an efficient channel to facilitate energy conversion, but the rapid design and rational screening of high-performance catalysts remain a great challenge. In this work, we investigated the relationships between the configuration, energy, and electronic properties of SnS2 loaded with transition metal single atom (TM@SnS2) and analyzed the mechanism of CO2 activation and reduction by using density functional theory. The "charge transfer bridge" promoted the adsorption of CO2 on TM@SnS2, thus enhancing the binding of HCOOH∗ to the catalyst for further hydrogenation and reduction to high-value CH4. The research revealed that the binding free energy of COOH∗ on TM@SnS2 formed a "volcano curve" with the limiting potential of CO2 reduction to CH4, and the TM@SnS2 (TM = Cr, Ru, Os, and Pt) at the "volcano top" exhibited a high CH4 activity.

3.
Nat Commun ; 14(1): 6168, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794001

RESUMEN

The active center for the adsorption and activation of carbon dioxide plays a vital role in the conversion and product selectivity of photocatalytic CO2 reduction. Here, we find multiple metal sulfides CuInSnS4 octahedral nanocrystal with exposed (1 1 1) plane for the selectively photocatalytic CO2 reduction to methane. Still, the product is switched to carbon monoxide on the corresponding individual metal sulfides In2S3, SnS2, and Cu2S. Unlike the common metal or defects as active sites, the non-metal sulfur atom in CuInSnS4 is revealed to be the adsorption center for responding to the selectivity of CH4 products. The carbon atom of CO2 adsorbed on the electron-poor sulfur atom of CuInSnS4 is favorable for stabilizing the intermediates and thus promotes the conversion of CO2 to CH4. Both the activity and selectivity of CH4 products over the pristine CuInSnS4 nanocrystal can be further improved by the modification of with various co-catalysts to enhance the separation of the photogenerated charge carrier. This work provides a non-metal active site to determine the conversion and selectivity of photocatalytic CO2 reduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA