Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Numer Method Biomed Eng ; 37(3): e3431, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33336869

RESUMEN

Numerical flow simulations that analyze the turbulent flow characteristics within a turbopump are important for optimizing the efficiency of such machines. In the case of ventricular assist devices (VADs), turbulent flow characteristics must be also examined in order to improve hemocompatibility. Turbulence increases the shear stresses in the VAD flow, which can lead to an increased damage to the transported blood components. Therefore, an understanding of the turbulent flow patterns and their significance for the numerical blood damage prediction is particularly important for flow optimizations in VADs in order to identify and thus minimize flow regions where blood could be damaged due to high turbulent stresses. Nevertheless, the turbulence occurring in VADs and the local turbulent structures that lead to increased turbulent stresses have not yet been analyzed in detail in these machines. Therefore, this study aims to investigate the turbulence in an axial VAD in a comprehensive and double tracked way. First, the flow in an axial VAD was computed using the large-eddy simulation method, and it was verified that the majority of the turbulence was directly resolved by the simulation. Then, the turbulent flow state of the VAD was quantified globally. For this purpose, a self-designed evaluation method, the power loss analysis, was used. Subsequently, local flow regions and flow structures were identified where significant turbulent stresses prevail. It will be shown that the identified regions are universal and will also occur in other axial blood pumps as well, for example, in the HeartMate II.


Asunto(s)
Corazón Auxiliar , Simulación por Computador , Estrés Mecánico
2.
Cardiovasc Eng Technol ; 12(3): 251-272, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33675019

RESUMEN

PURPOSE: Cardiovascular engineering includes flows with fluid-dynamical stresses as a parameter of interest. Mechanical stresses are high-risk factors for blood damage and can be assessed by computational fluid dynamics. By now, it is not described how to calculate an adequate scalar stress out of turbulent flow regimes when the whole share of turbulence is not resolved by the simulation method and how this impacts the stress calculation. METHODS: We conducted direct numerical simulations (DNS) of test cases (a turbulent channel flow and the FDA nozzle) in order to access all scales of flow movement. After validation of both DNS with literature und experimental data using magnetic resonance imaging, the mechanical stress is calculated as a baseline. Afterwards, same flows are calculated using state-of-the-art turbulence models. The stresses are computed for every result using our definition of an equivalent scalar stress, which includes the influence from respective turbulence model, by using the parameter dissipation. Afterwards, the results are compared with the baseline data. RESULTS: The results show a good agreement regarding the computed stress. Even when no turbulence is resolved by the simulation method, the results agree well with DNS data. When the influence of non-resolved motion is neglected in the stress calculation, it is underpredicted in all cases. CONCLUSION: With the used scalar stress formulation, it is possible to include information about the turbulence of the flow into the mechanical stress calculation even when the used simulation method does not resolve any turbulence.


Asunto(s)
Hidrodinámica , Simulación por Computador , Estrés Mecánico
3.
Int J Artif Organs ; 42(12): 735-747, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31328604

RESUMEN

The blood damage prediction in rotary blood pumps is an important procedure to evaluate the hemocompatibility of such systems. Blood damage is caused by shear stresses to the blood cells and their exposure times. The total impact of an equivalent shear stress can only be taken into account when turbulent stresses are included in the blood damage prediction. The aim of this article was to analyze the influence of the turbulent stresses on the damage prediction in a rotary blood pump's flow. Therefore, the flow in a research blood pump was computed using large eddy simulations. A highly turbulence-resolving setup was used in order to directly resolve most of the computed stresses. The simulations were performed at the design point and an operation point with lower flow rate. Blood damage was predicted using three damage models (volumetric analysis of exceeded stress thresholds, hemolysis transport equation, and hemolysis approximation via volume integral) and two shear stress definitions (with and without turbulent stresses). For both simulations, turbulent stresses are the dominant stresses away from the walls. Here, they act in a range between 9 and 50 Pa. Nonetheless, the mean stresses in the proximity of the walls reach levels, which are one order of magnitude higher. Due to this, the turbulent stresses have a small impact on the results of the hemolysis prediction. Yet, turbulent stresses should be included in the damage prediction, since they belong to the total equivalent stress definition and could impact the damage on proteins or platelets.


Asunto(s)
Corazón Auxiliar , Hemólisis , Estrés Mecánico , Velocidad del Flujo Sanguíneo , Simulación por Computador , Diseño Asistido por Computadora , Hemodinámica , Humanos , Ensayo de Materiales/métodos , Modelos Cardiovasculares , Reproducibilidad de los Resultados
4.
Int J Artif Organs ; 41(11): 752-763, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29898615

RESUMEN

PURPOSE:: Numerical flow analysis (computational fluid dynamics) in combination with the prediction of blood damage is an important procedure to investigate the hemocompatibility of a blood pump, since blood trauma due to shear stresses remains a problem in these devices. Today, the numerical damage prediction is conducted using unsteady Reynolds-averaged Navier-Stokes simulations. Investigations with large eddy simulations are rarely being performed for blood pumps. Hence, the aim of the study is to examine the viscous shear stresses of a large eddy simulation in a blood pump and compare the results with an unsteady Reynolds-averaged Navier-Stokes simulation. METHODS:: The simulations were carried out at two operation points of a blood pump. The flow was simulated on a 100M element mesh for the large eddy simulation and a 20M element mesh for the unsteady Reynolds-averaged Navier-Stokes simulation. As a first step, the large eddy simulation was verified by analyzing internal dissipative losses within the pump. Then, the pump characteristics and mean and turbulent viscous shear stresses were compared between the two simulation methods. RESULTS:: The verification showed that the large eddy simulation is able to reproduce the significant portion of dissipative losses, which is a global indication that the equivalent viscous shear stresses are adequately resolved. The comparison with the unsteady Reynolds-averaged Navier-Stokes simulation revealed that the hydraulic parameters were in agreement, but differences for the shear stresses were found. CONCLUSION:: The results show the potential of the large eddy simulation as a high-quality comparative case to check the suitability of a chosen Reynolds-averaged Navier-Stokes setup and turbulence model. Furthermore, the results lead to suggest that large eddy simulations are superior to unsteady Reynolds-averaged Navier-Stokes simulations when instantaneous stresses are applied for the blood damage prediction.


Asunto(s)
Simulación por Computador , Corazón Auxiliar , Estrés Mecánico , Humanos , Hidrodinámica , Modelos Cardiovasculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA