Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biology (Basel) ; 12(11)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37998000

RESUMEN

The ubiquitous peptide endothelin is currently under investigation as a modulatory factor of autonomic responses to acute emotional stress. Baseline plasma levels of endothelin alter blood pressure responses, but it remains unclear whether autonomic activity and arrhythmogenesis (i.e., brady- or tachyarrhythmias) are affected. We recorded sympathetic and vagal indices (derived from heart rate variability analysis), rhythm disturbances, voluntary motion, and systolic blood pressure after acute emotional stress in conscious rats with implanted telemetry devices. Two strains were compared, namely wild-type and ETB-deficient rats, the latter displaying elevated plasma endothelin. No differences in heart rate or blood pressure were evident, but sympathetic responses were blunted in ETB-deficient rats, contrasting prompt activation in wild-type rats. Vagal withdrawal was observed in both strains at the onset of stress, but vagal activity was subsequently restored in ETB-deficient rats, accompanied by low voluntary motion during recovery. Reflecting such distinct autonomic patterns, frequent premature ventricular contractions were recorded in wild-type rats, as opposed to sinus pauses in ETB-deficient rats. Thus, chronically elevated plasma endothelin levels blunt autonomic responses to acute emotional stress, resulting in vagal dominance and bradyarrhythmias. Our study provides further insights into the pathophysiology of stress-induced tachyarrhythmias and syncope.

2.
Life (Basel) ; 12(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36295062

RESUMEN

Despite the contemporary treatment of acute coronary syndromes, arrhythmic complications occurring prior to medical attendance remain significant, mandating in-depth understanding of the underlying mechanisms. Sympathetic activation has long been known to play a key role in the pathophysiology of ischemia-induced arrhythmias, but the regulating factors remain under investigation. Several lines of evidence implicate the endothelin system (a family of three isopeptides and two specific receptors) as an important modulator of sympathetic activation in the setting of acute coronary syndromes. Such interaction is present in the heart and in the adrenal medulla, whereas less is known on the effects of the endothelin system on the central autonomic network. This article summarizes the current state-of-the-art, placing emphasis on early-phase arrhythmogenesis, and highlights potential areas of future research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA