Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 26(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34443683

RESUMEN

The aim of this study is to achieve a fully cured thermoset matrix that is heated by a direct electric current passing through the reinforcement fibers i.e., the Joule heating effect. Two types of fibers were used as heating elements for curing the epoxy resins. Kanthal resistance fibers were used as reference heating elements and subsequently, they were replaced by a Torayca Carbon Tow of the same radius. The specimens were cured by the heat produced by a direct electric current passing through the fibers and achieving temperatures of 50 °C and 70 °C. Specimens cured in a conventional oven were also manufactured, to compare the resistance heating method to the conventional one. Next, all specimens were mechanically characterized in a quasi-static three-point bending mode of loading and experimental results were compared to derive useful conclusions concerning the applicability of the technique to polymer/composite materials mass production. Finally, a preliminary economical study concerning power consumption needed for the application of both the traditional oven curing and the carbon fibers heating elements use for the manufacturing of the same amounts of materials is presented, showing a maximum financial benefit that can be achieved, on the order of 68%.

2.
Biomedicines ; 12(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38397863

RESUMEN

A combined computational and experimental study of 3D-printed scaffolds made from hybrid nanocomposite materials for potential applications in bone tissue engineering is presented. Polycaprolactone (PCL) and polylactic acid (PLA), enhanced with chitosan (CS) and multiwalled carbon nanotubes (MWCNTs), were investigated in respect of their mechanical characteristics and responses in fluidic environments. A novel scaffold geometry was designed, considering the requirements of cellular proliferation and mechanical properties. Specimens with the same dimensions and porosity of 45% were studied to fully describe and understand the yielding behavior. Mechanical testing indicated higher apparent moduli in the PLA-based scaffolds, while compressive strength decreased with CS/MWCNTs reinforcement due to nanoscale challenges in 3D printing. Mechanical modeling revealed lower stresses in the PLA scaffolds, attributed to the molecular mass of the filler. Despite modeling challenges, adjustments improved simulation accuracy, aligning well with experimental values. Material and reinforcement choices significantly influenced responses to mechanical loads, emphasizing optimal structural robustness. Computational fluid dynamics emphasized the significance of scaffold permeability and wall shear stress in influencing bone tissue growth. For an inlet velocity of 0.1 mm/s, the permeability value was estimated at 4.41 × 10-9 m2, which is in the acceptable range close to human natural bone permeability. The average wall shear stress (WSS) value that indicates the mechanical stimuli produced by cells was calculated to be 2.48 mPa, which is within the range of the reported literature values for promoting a higher proliferation rate and improving osteogenic differentiation. Overall, a holistic approach was utilized to achieve a delicate balance between structural robustness and optimal fluidic conditions, in order to enhance the overall performance of scaffolds in tissue engineering applications.

3.
Materials (Basel) ; 16(6)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36984307

RESUMEN

In adhesive joints used in several industrial applications, the adherends' bonding is made using an adhesive, which is usually an epoxy resin. However, since these adhesives are derived from petroleum fractions, they are harmful to the environment, due to the pollutants produced both during their manufacture and subsequent use. Thus, in recent years, effective steps have been made to replace these adhesives with ecological (green) ones. The present work focuses on the study of aluminum A1050 joints bonded with a green adhesive; the study also involves the electrochemical anodization method applied to adherends for nano-functionalization. The nanostructured aluminum adherends allow the formation of an expanded surface area for adhesion, compared to the non-anodized adherends. For comparison reasons, two different adhesives (Araldite LY1564 and Green Super Sap) were used. In addition, for the same reasons, both anodized and non-anodized aluminum adherends were joined with both types of adhesives. The lap joints were subsequently tested under both shear-tension and three-point bending conditions. The major findings were that aluminum A1050 anodization in all cases resulted in shear strength enhancement of the joints, while joints with both aluminum anodized and non-anodized adherends and bonded with the eco-friendly adhesive showed a superior shear behavior as compared to the respective joints bonded with Araldite adhesive.

4.
Materials (Basel) ; 14(21)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34772113

RESUMEN

The aim of the present study is to investigate the inclusion geometry and concentration effect on the quasi-static properties of a starch-epoxy hybrid matrix composite. The composites investigated consisted of a starch-epoxy hybrid matrix reinforced with four different glass inclusions such as 3 mm long chopped strands, 0.2 mm long short glass fibers, glass beads (120 µm in diameter) and glass bubbles (65 µm in diameter) at different concentrations. The flexural modulus and the strength of all materials tested were determined using three-point bending tests. The Property Prediction Model (PPM) was applied to predict the experimental findings. The model predicted remarkably well the mechanical behavior of all the materials manufactured and tested. The maximum value of the flexural modulus in the case of the 3 mm long chopped strands was found to be 75% greater than the modulus of the hybrid matrix. Furthermore, adding glass beads in the hybrid matrix led to a simultaneous increase in both the flexural modulus and the strength.

5.
Polymers (Basel) ; 13(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806764

RESUMEN

The response of fiber-reinforced polymer composites to an externally applied mechanical excitation is closely related to the microscopic stress transfer mechanisms taking place in the fiber-matrix interphasial region. In particular, in the case of viscoelastic responses, these mechanisms are time dependent. Defining the interphase thickness as the maximum radial distance from the fiber surface where a specific matrix property is affected by the fiber presence, it is important to study its variation with time. In the present investigation, the stress relaxation behavior of a glass fiber-reinforced polymer (GFRP) under flexural conditions was studied. Next, applying the hybrid viscoelastic interphase model (HVIM), developed by the first author, the interphase modulus and interphase thickness were both evaluated, and their variation with time during the stress relaxation test was plotted. It was found that the interphase modulus decreases with the radial distance, being always higher than the bulk matrix modulus. In addition, the interphase thickness increases with time, showing that during stress relaxation, fiber-matrix debonding takes place. Finally, the effect of fiber interaction on the interphase modulus was found. It is observed that fiber interaction depends on both the fiber-matrix degree of adhesion as well as the fiber volume fraction and the time-dependent interphase modulus.

6.
Polymers (Basel) ; 12(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31877625

RESUMEN

Epoxy resin composites with different weight fractions of TiO2 microparticles (1%, 5%, 10%, 15%, 20%) and of TiO2 nanoparticles (0.5%, 1%, 2%, 3%) were prepared. The particle size of the nanoparticles was averaged around 21 nm while the particle size of the micro TiO2 particles was averaged around 0.2 µm. The morphology of the manufactured particulate composites was studied by means of scanning electron microscopy (SEM). The mechanical properties of both nanocomposites (21 nm) and microcomposites (0.2 µm) were investigated and compared through flexural testing. Furthermore, the effect of displacement-rate on the viscoelastic behavior of composite materials was investigated. The flexural tests were carried out at different filler weight fractions and different displacement-rates (0.5, 5, 10, 50 mm/min). The influence of TiO2 micro- and nanoparticles on the mechanical response of the manufactured composites was studied. For micro TiO2 composites, a maximum increase in flexural modulus on the order of 23% was achieved, while, in the nanocomposites, plastification of the epoxy matrix due to the presence of TiO2 nanoparticles was observed. Both behaviors were predicted by the Property Prediction Model (PPM), and a fair agreement between experimental results and theoretical predictions was observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA