Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell ; 173(2): 485-498.e11, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29576455

RESUMEN

Understanding how complex brain wiring is produced during development is a daunting challenge. In Drosophila, information from 800 retinal ommatidia is processed in distinct brain neuropiles, each subdivided into 800 matching retinotopic columns. The lobula plate comprises four T4 and four T5 neuronal subtypes. T4 neurons respond to bright edge motion, whereas T5 neurons respond to dark edge motion. Each is tuned to motion in one of the four cardinal directions, effectively establishing eight concurrent retinotopic maps to support wide-field motion. We discovered a mode of neurogenesis where two sequential Notch-dependent divisions of either a horizontal or a vertical progenitor produce matching sets of two T4 and two T5 neurons retinotopically coincident with pairwise opposite direction selectivity. We show that retinotopy is an emergent characteristic of this neurogenic program and derives directly from neuronal birth order. Our work illustrates how simple developmental rules can implement complex neural organization.


Asunto(s)
Drosophila/fisiología , Percepción de Movimiento/fisiología , Retina/fisiología , Animales , Proteínas de Drosophila/metabolismo , Locomoción/fisiología , Modelos Neurológicos , Neuronas/fisiología , Lóbulo Óptico de Animales no Mamíferos/química , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Receptores Notch/metabolismo , Retina/citología , Vías Visuales
2.
Nature ; 541(7637): 365-370, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28077877

RESUMEN

In the Drosophila optic lobes, 800 retinotopically organized columns in the medulla act as functional units for processing visual information. The medulla contains over 80 types of neuron, which belong to two classes: uni-columnar neurons have a stoichiometry of one per column, while multi-columnar neurons contact multiple columns. Here we show that combinatorial inputs from temporal and spatial axes generate this neuronal diversity: all neuroblasts switch fates over time to produce different neurons; the neuroepithelium that generates neuroblasts is also subdivided into six compartments by the expression of specific factors. Uni-columnar neurons are produced in all spatial compartments independently of spatial input; they innervate the neuropil where they are generated. Multi-columnar neurons are generated in smaller numbers in restricted compartments and require spatial input; the majority of their cell bodies subsequently move to cover the entire medulla. The selective integration of spatial inputs by a fixed temporal neuroblast cascade thus acts as a powerful mechanism for generating neural diversity, regulating stoichiometry and the formation of retinotopy.


Asunto(s)
Tipificación del Cuerpo , Diferenciación Celular , Drosophila melanogaster/citología , Neurogénesis , Neuronas/citología , Lóbulo Óptico de Animales no Mamíferos/citología , Animales , Tipificación del Cuerpo/genética , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Movimiento Celular , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Masculino , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Neurópilo/citología , Neurópilo/metabolismo , Lóbulo Óptico de Animales no Mamíferos/crecimiento & desarrollo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Pupa/citología , Pupa/genética , Pupa/crecimiento & desarrollo , Análisis Espacio-Temporal , Factores de Tiempo
3.
Radiol Artif Intell ; 6(3): e230181, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38506618

RESUMEN

Purpose To evaluate the effect of implementing two distinct commercially available deep learning reconstruction (DLR) algorithms on the efficiency of MRI examinations conducted in real clinical practice within an outpatient setting at a large, multicenter institution. Materials and Methods This retrospective study included 7346 examinations from 10 clinical MRI scanners analyzed during the pre- and postimplementation periods of DLR methods. Two different types of DLR methods, namely Digital Imaging and Communications in Medicine (DICOM)-based and k-space-based methods, were implemented in half of the scanners (three DICOM-based and two k-space-based), while the remaining five scanners had no DLR method implemented. Scan and room times of each examination type during the pre- and postimplementation periods were compared among the different DLR methods using the Wilcoxon test. Results The application of deep learning methods resulted in significant reductions in scan and room times for certain examination types. The DICOM-based method demonstrated up to a 53% reduction in scan times and a 41% reduction in room times for various study types. The k-space-based method demonstrated up to a 27% reduction in scan times but did not significantly reduce room times. Conclusion DLR methods were associated with reductions in scan and room times in a clinical setting, though the effects were heterogeneous depending on examination type. Thus, potential adopters should carefully evaluate their case mix to determine the impact of integrating these tools. Keywords: Deep Learning MRI Reconstruction, Reconstruction Algorithms, DICOM-based Reconstruction, k-Space-based Reconstruction © RSNA, 2024 See also the commentary by GharehMohammadi in this issue.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Femenino , Humanos , Masculino , Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos
4.
J Med Imaging (Bellingham) ; 10(6): 061108, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38106815

RESUMEN

Purpose: Breast ultrasound suffers from low positive predictive value and specificity. Artificial intelligence (AI) proposes to improve accuracy, reduce false negatives, reduce inter- and intra-observer variability and decrease the rate of benign biopsies. Perpetuating racial/ethnic disparities in healthcare and patient outcome is a potential risk when incorporating AI-based models into clinical practice; therefore, it is necessary to validate its non-bias before clinical use. Approach: Our retrospective review assesses whether our AI decision support (DS) system demonstrates racial/ethnic bias by evaluating its performance on 1810 biopsy proven cases from nine breast imaging facilities within our health system from January 1, 2018 to October 28, 2021. Patient age, gender, race/ethnicity, AI DS output, and pathology results were obtained. Results: Significant differences in breast pathology incidence were seen across different racial and ethnic groups. Stratified analysis showed that the difference in output by our AI DS system was due to underlying differences in pathology incidence for our specific cohort and did not demonstrate statistically significant bias in output among race/ethnic groups, suggesting similar effectiveness of our AI DS system among different races (p>0.05 for all). Conclusions: Our study shows promise that an AI DS system may serve as a valuable second opinion in the detection of breast cancer on diagnostic ultrasound without significant racial or ethnic bias. AI tools are not meant to replace the radiologist, but rather to aid in screening and diagnosis without perpetuating racial/ethnic disparities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA