Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pharm Sci ; 111(4): 982-990, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35090866

RESUMEN

Aluminum hydroxide (Al(OH)3) and aluminum phosphate (AlPO4) are widely used adjuvants in human vaccines. However, a rationale to choose one or the other is lacking since the differences between molecular mechanisms of action of these adjuvants are unknown. In the current study, we compared the innate immune response induced by both adjuvants in vitro and in vivo. Proteome analysis of human primary monocytes was used to determine the immunological pathways activated by these adjuvants. Subsequently, analysis of immune cells present at the site of injection and proteome analysis of the muscle tissue revealed the differentially regulated processes related to the innate immune response in vivo. Incubation with Al(OH)3 specifically enhanced the activation of antigen processing and presentation pathways in vitro. In vivo experiments showed that only intramuscular (I.M.) immunization with Al(OH)3 attracted neutrophils, while I.M. immunization with AlPO4 attracted monocytes/macrophages to the site of injection. In addition, only I.M. immunization with Al(OH)3 enhanced the process of hemostasis after 96 hours, possibly related to neutrophilic extracellular trap formation. Both adjuvants differentially regulated various immune system-related processes. The results show that Al(OH)3 and AlPO4 act differently on the innate immune system. We speculate that these different regulations affect the interaction with cells, due to the different physicochemical properties of both adjuvants.


Asunto(s)
Hidróxido de Aluminio , Proteoma , Adyuvantes Inmunológicos/farmacología , Adyuvantes Farmacéuticos , Aluminio , Compuestos de Aluminio , Hidróxido de Aluminio/farmacología , Humanos , Inmunidad Innata , Fosfatos
2.
J Pharm Sci ; 109(1): 750-760, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31449816

RESUMEN

Subunit vaccines often contain colloidal aluminum salt-based adjuvants to activate the innate immune system. These aluminum salts consist of micrometer-sized aggregates. It is well-known that particle size affects the adjuvant effect of particulate adjuvants. In this study, the activation of human monocytes by hexagonal-shaped gibbsite (ø = 210 ± 40 nm) and rod-shaped boehmite (ø = 83 ± 827 nm) was compared with classical aluminum oxyhydroxide adjuvant (alum). To this end, human primary monocytes were cultured in the presence of alum, gibbsite, or boehmite. The transcriptome and proteome of the monocytes were investigated by using quantitative polymerase chain reaction and mass spectrometry. Human monocytic THP-1 cells were used to investigate the effect of the particles on cellular maturation, differentiation, activation, and cytokine secretion, as measured by flow cytometry and enzyme-linked immunosorbent assay. Each particle type resulted in a specific gene expression profile. IL-1ß and IL-6 secretion was significantly upregulated by boehmite and alum. Of the 7 surface markers investigated, only CD80 was significantly upregulated by alum and none by gibbsite or boehmite. Gibbsite hardly activated the monocytes. Boehmite activated human primary monocytes equally to alum, but induced a much milder stress-related response. Therefore, boehmite was identified as a promising adjuvant candidate.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Hidróxido de Aluminio/farmacología , Óxido de Aluminio/farmacología , Inmunidad Innata/efectos de los fármacos , Monocitos/efectos de los fármacos , Adyuvantes Inmunológicos/química , Hidróxido de Aluminio/química , Óxido de Aluminio/química , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Diferenciación Celular/efectos de los fármacos , Coloides , Composición de Medicamentos , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Tamaño de la Partícula , Células THP-1 , Transcriptoma
3.
J Proteomics ; 175: 144-155, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29317357

RESUMEN

Aluminum-based adjuvants are the most widely used adjuvants in human vaccines. A comprehensive understanding of the mechanism of action of aluminum adjuvants at the molecular level, however, is still elusive. Here, we unravel the effects of aluminum hydroxide Al(OH)3 by a systems-wide analysis of the Al(OH)3-induced monocyte response. Cell response analysis by cytokine release was combined with (targeted) transcriptome and full proteome analysis. Results from this comprehensive study revealed two novel pathways to become activated upon monocyte stimulation with Al(OH)3: the first pathway was IFNß signaling possibly induced by DAMP sensing pathways like TLR or NOD1 activation, and second the HLA class I antigen processing and presentation pathway. Furthermore, known mechanisms of the adjuvant activity of Al(OH)3 were elucidated in more detail such as inflammasome and complement activation, homeostasis and HLA-class II upregulation, possibly related to increased IFNγ gene expression. Altogether, our study revealed which immunological pathways are activated upon stimulation of monocytes with Al(OH)3, refining our knowledge on the adjuvant effect of Al(OH)3 in primary monocytes. SIGNIFICANCE: Aluminum salts are the most used adjuvants in human vaccines but a comprehensive understanding of the working mechanism of alum adjuvants at the molecular level is still elusive. Our Systems Vaccinology approach, combining complementary molecular biological, immunological and mass spectrometry-based techniques gave a detailed insight in the molecular mechanisms and pathways induced by Al(OH)3 in primary monocytes. Several novel immunological relevant cellular pathways were identified: type I interferon secretion potentially induced by TLR and/or NOD like signaling, the activation of the inflammasome and the HLA Class-I and Class-II antigen presenting pathways induced by IFNγ. This study highlights the mechanisms of the most commonly used adjuvant in human vaccines by combing proteomics, transcriptomics and cytokine analysis revealing new potential mechanisms of action for Al(OH)3.


Asunto(s)
Hidróxido de Aluminio/farmacología , Monocitos/efectos de los fármacos , Adyuvantes Inmunológicos/farmacología , Presentación de Antígeno , Citocinas/metabolismo , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata/efectos de los fármacos , Inflamación/inmunología , Monocitos/metabolismo , Proteómica
4.
PLoS One ; 13(5): e0197885, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29813132

RESUMEN

Aluminum-based adjuvants have widely been used in human vaccines since 1926. In the absence of antigens, aluminum-based adjuvants can initiate the inflammatory preparedness of innate cells, yet the impact of antigens on this response has not been investigated so far. In this study, we address the modulating effect of vaccine antigens on the monocyte-derived innate response by comparing processes initiated by Al(OH)3 and by Infanrix, an Al(OH)3-adjuvanted trivalent combination vaccine (DTaP), containing diphtheria toxoid (D), tetanus toxoid (T) and acellular pertussis (aP) vaccine antigens. A systems-wide analysis of stimulated monocytes was performed in which full proteome analysis was combined with targeted transcriptome analysis and cytokine analysis. This comprehensive study revealed four major differences in the monocyte response, between plain Al(OH)3 and DTaP stimulation conditions: (I) DTaP increased the anti-inflammatory cytokine IL-10, whereas Al(OH)3 did not; (II) Al(OH)3 increased the gene expression of IFNγ, IL-2 and IL-17a in contrast to the limited induction or even downregulation by DTaP; (III) increased expression of type I interferons-induced proteins was not observed upon DTaP stimulation, but was observed upon Al(OH)3 stimulation; (IV) opposing regulation of protein localization pathways was observed for Al(OH)3 and DTaP stimulation, related to the induction of exocytosis by Al(OH)3 alone. This study highlights that vaccine antigens can antagonize Al(OH)3-induced programming of the innate immune responses at the monocyte level.


Asunto(s)
Hidróxido de Aluminio/farmacología , Antígenos Bacterianos/inmunología , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/inmunología , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Monocitos/efectos de los fármacos , Monocitos/inmunología , Adulto , Presentación de Antígeno/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Humanos , Inflamasomas/metabolismo , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Monocitos/citología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA