Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(12): 2015-2028, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37979581

RESUMEN

We examined more than 97,000 families from four neurodevelopmental disease cohorts and the UK Biobank to identify phenotypic and genetic patterns in parents contributing to neurodevelopmental disease risk in children. We identified within- and cross-disorder correlations between six phenotypes in parents and children, such as obsessive-compulsive disorder (R = 0.32-0.38, p < 10-126). We also found that measures of sub-clinical autism features in parents are associated with several autism severity measures in children, including biparental mean Social Responsiveness Scale scores and proband Repetitive Behaviors Scale scores (regression coefficient = 0.14, p = 3.38 × 10-4). We further describe patterns of phenotypic similarity between spouses, where spouses show correlations for six neurological and psychiatric phenotypes, including a within-disorder correlation for depression (R = 0.24-0.68, p < 0.001) and a cross-disorder correlation between anxiety and bipolar disorder (R = 0.09-0.22, p < 10-92). Using a simulated population, we also found that assortative mating can lead to increases in disease liability over generations and the appearance of "genetic anticipation" in families carrying rare variants. We identified several families in a neurodevelopmental disease cohort where the proband inherited multiple rare variants in disease-associated genes from each of their affected parents. We further identified parental relatedness as a risk factor for neurodevelopmental disorders through its inverse relationship with variant pathogenicity and propose that parental relatedness modulates disease risk by increasing genome-wide homozygosity in children (R = 0.05-0.26, p < 0.05). Our results highlight the utility of assessing parent phenotypes and genotypes toward predicting features in children who carry rare variably expressive variants and implicate assortative mating as a risk factor for increased disease severity in these families.


Asunto(s)
Trastorno Autístico , Trastorno Bipolar , Niño , Humanos , Virulencia , Padres , Familia , Trastorno Autístico/genética , Trastorno Bipolar/genética
2.
Genome Res ; 32(11-12): 1967-1980, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36351771

RESUMEN

As expansions of CGG short tandem repeats (STRs) are established as the genetic etiology of many neurodevelopmental disorders, we aimed to elucidate the inheritance patterns and role of CGG STRs in autism-spectrum disorder (ASD). By genotyping 6063 CGG STR loci in a large cohort of trios and quads with an ASD-affected proband, we determined an unprecedented rate of CGG repeat length deviation across a single generation. Although the concept of repeat length being linked to deviation rate was solidified, we show how shorter STRs display greater degrees of size variation. We observed that CGG STRs did not segregate by Mendelian principles but with a bias against longer repeats, which appeared to magnify as repeat length increased. Through logistic regression, we identified 19 genes that displayed significantly higher rates and degrees of CGG STR expansion within the ASD-affected probands (P < 1 × 10-5). This study not only highlights novel repeat expansions that may play a role in ASD but also reinforces the hypothesis that CGG STRs are specifically linked to human cognition.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno Autístico/genética , Repeticiones de Microsatélite/genética , Trastorno del Espectro Autista/genética , Alelos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética
3.
Am J Hum Genet ; 107(4): 654-669, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32937144

RESUMEN

There is growing recognition that epivariations, most often recognized as promoter hypermethylation events that lead to gene silencing, are associated with a number of human diseases. However, little information exists on the prevalence and distribution of rare epigenetic variation in the human population. In order to address this, we performed a survey of methylation profiles from 23,116 individuals using the Illumina 450k array. Using a robust outlier approach, we identified 4,452 unique autosomal epivariations, including potentially inactivating promoter methylation events at 384 genes linked to human disease. For example, we observed promoter hypermethylation of BRCA1 and LDLR at population frequencies of ∼1 in 3,000 and ∼1 in 6,000, respectively, suggesting that epivariations may underlie a fraction of human disease which would be missed by purely sequence-based approaches. Using expression data, we confirmed that many epivariations are associated with outlier gene expression. Analysis of variation data and monozygous twin pairs suggests that approximately two-thirds of epivariations segregate in the population secondary to underlying sequence mutations, while one-third are likely sporadic events that occur post-zygotically. We identified 25 loci where rare hypermethylation coincided with the presence of an unstable CGG tandem repeat, validated the presence of CGG expansions at several loci, and identified the putative molecular defect underlying most of the known folate-sensitive fragile sites in the genome. Our study provides a catalog of rare epigenetic changes in the human genome, gives insight into the underlying origins and consequences of epivariations, and identifies many hypermethylated CGG repeat expansions.


Asunto(s)
Proteína BRCA1/genética , Epigénesis Genética , Enfermedades Genéticas Congénitas/genética , Genoma Humano , Receptores de LDL/genética , Expansión de Repetición de Trinucleótido , Proteína BRCA1/metabolismo , Metilación de ADN , Femenino , Ácido Fólico/metabolismo , Silenciador del Gen , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/patología , Sitios Genéticos , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Regiones Promotoras Genéticas , Receptores de LDL/metabolismo , Gemelos Monocigóticos
4.
Mol Psychiatry ; 26(5): 1619-1633, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-31664177

RESUMEN

With Alzheimer's disease (AD) exhibiting reduced ability of neural stem cell renewal, we hypothesized that de novo mutations controlling embryonic development, in the form of brain somatic mutations instigate the disease. A leading gene presenting heterozygous dominant de novo autism-intellectual disabilities (ID) causing mutations is activity-dependent neuroprotective protein (ADNP), with intact ADNP protecting against AD-tauopathy. We discovered a genomic autism ADNP mutation (c.2188C>T) in postmortem AD olfactory bulbs and hippocampi. RNA-Seq of olfactory bulbs also identified a novel ADNP hotspot mutation, c.2187_2188insA. Altogether, 665 mutations in 596 genes with 441 mutations in AD patients (389 genes, 38% AD-exclusive mutations) and 104 genes presenting disease-causing mutations (OMIM) were discovered. OMIM AD mutated genes converged on cytoskeletal mechanisms, autism and ID causing mutations (about 40% each). The number and average frequencies of AD-related mutations per subject were higher in AD subjects compared to controls. RNA-seq datamining (hippocampus, dorsolateral prefrontal cortex, fusiform gyrus and superior frontal gyrus-583 subjects) yielded similar results. Overlapping all tested brain areas identified unique and shared mutations, with ADNP singled out as a gene associated with autism/ID/AD and presenting several unique aging/AD mutations. The large fusiform gyrus library (117 subjects) with high sequencing coverage correlated the c.2187_2188insA ADNP mutation frequency to Braak stage (tauopathy) and showed more ADNP mutations in AD specimens. In cell cultures, the ADNP-derived snippet NAP inhibited mutated-ADNP-microtubule (MT) toxicity and enhanced Tau-MT association. We propose a paradigm-shifting concept in the perception of AD whereby accumulating mosaic somatic mutations promote brain pathology.


Asunto(s)
Enfermedad de Alzheimer , Trastorno Autístico , Proteínas de Homeodominio/genética , Discapacidad Intelectual , Proteínas del Tejido Nervioso/genética , Enfermedad de Alzheimer/genética , Trastorno Autístico/genética , Encéfalo/metabolismo , Humanos , Mutación
5.
Hum Mol Genet ; 28(17): 2900-2919, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31127942

RESUMEN

N-alpha-acetylation is one of the most common co-translational protein modifications in humans and is essential for normal cell function. NAA10 encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. The auxiliary and regulatory subunits of the NatA complex are NAA15 and Huntington-interacting protein (HYPK), respectively. Through a genotype-first approach with exome sequencing, we identified and phenotypically characterized 30 individuals from 30 unrelated families with 17 different de novo or inherited, dominantly acting missense variants in NAA10 or NAA15. Clinical features of affected individuals include variable levels of intellectual disability, delayed speech and motor milestones and autism spectrum disorder. Additionally, some subjects present with mild craniofacial dysmorphology, congenital cardiac anomalies and seizures. One of the individuals is an 11-year-old boy with a frameshift variant in exon 7 of NAA10, who presents most notably with microphthalmia, which confirms a prior finding with a single family with Lenz microphthalmia syndrome. Biochemical analyses of variants as part of the human NatA complex, as well as enzymatic analyses with and without the HYPK regulatory subunit, help to explain some of the phenotypic differences seen among the different variants.


Asunto(s)
Biomarcadores , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/genética , Fenotipo , Adolescente , Adulto , Alelos , Niño , Preescolar , Biología Computacional/métodos , Activación Enzimática , Estabilidad de Enzimas , Facies , Femenino , Sitios Genéticos , Pruebas Genéticas , Genotipo , Humanos , Lactante , Masculino , Modelos Moleculares , Mutación , Acetiltransferasa A N-Terminal/química , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/química , Acetiltransferasa E N-Terminal/metabolismo , Conformación Proteica , Proteínas Recombinantes , Relación Estructura-Actividad , Adulto Joven
6.
Genet Med ; 23(2): 374-383, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33077894

RESUMEN

PURPOSE: JARID2, located on chromosome 6p22.3, is a regulator of histone methyltransferase complexes that is expressed in human neurons. So far, 13 individuals sharing clinical features including intellectual disability (ID) were reported with de novo heterozygous deletions in 6p22-p24 encompassing the full length JARID2 gene (OMIM 601594). However, all published individuals to date have a deletion of at least one other adjoining gene, making it difficult to determine if JARID2 is the critical gene responsible for the shared features. We aim to confirm JARID2 as a human disease gene and further elucidate the associated clinical phenotype. METHODS: Chromosome microarray analysis, exome sequencing, and an online matching platform (GeneMatcher) were used to identify individuals with single-nucleotide variants or deletions involving JARID2. RESULTS: We report 16 individuals in 15 families with a deletion or single-nucleotide variant in JARID2. Several of these variants are likely to result in haploinsufficiency due to nonsense-mediated messenger RNA (mRNA) decay. All individuals have developmental delay and/or ID and share some overlapping clinical characteristics such as facial features with those who have larger deletions involving JARID2. CONCLUSION: We report that JARID2 haploinsufficiency leads to a clinically distinct neurodevelopmental syndrome, thus establishing gene-disease validity for the purpose of diagnostic reporting.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Haploinsuficiencia/genética , Heterocigoto , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Complejo Represivo Polycomb 2/genética , Síndrome , Secuenciación del Exoma
7.
Brain ; 143(8): 2437-2453, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32761064

RESUMEN

In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-α (TNF-α)-induced signalling and prevention of cell death. Through national collaboration and GeneMatcher, we collected 23 patients with 21 different pathogenic MADD variants identified by next-generation sequencing. We clinically evaluated the series of patients and categorized the phenotypes in two groups. Group 1 consists of 14 patients with severe developmental delay, endo- and exocrine dysfunction, impairment of the sensory and autonomic nervous system, and haematological anomalies. The clinical course during the first years of life can be potentially fatal. The nine patients in Group 2 have a predominant neurological phenotype comprising mild-to-severe developmental delay, hypotonia, speech impairment, and seizures. Analysis of mRNA revealed multiple aberrant MADD transcripts in two patient-derived fibroblast cell lines. Relative quantification of MADD mRNA and protein in fibroblasts of five affected individuals showed a drastic reduction or loss of MADD. We conducted functional tests to determine the impact of the variants on different pathways. Treatment of patient-derived fibroblasts with TNF-α resulted in reduced phosphorylation of the extracellular signal-regulated kinases 1 and 2, enhanced activation of the pro-apoptotic enzymes caspase-3 and -7 and increased apoptosis compared to control cells. We analysed internalization of epidermal growth factor in patient cells and identified a defect in endocytosis of epidermal growth factor. We conclude that MADD deficiency underlies multiple cellular defects that can be attributed to alterations of TNF-α-dependent signalling pathways and defects in vesicular trafficking. Our data highlight the multifaceted role of MADD as a signalling molecule in different organs and reveal its physiological role in regulating the function of the sensory and autonomic nervous system and endo- and exocrine glands.


Asunto(s)
Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Discapacidades del Desarrollo/genética , Factores de Intercambio de Guanina Nucleótido/genética , Enfermedades del Sistema Nervioso/genética , Humanos , Mutación , Fenotipo , Transporte de Proteínas/genética , Transducción de Señal/genética
8.
Cereb Cortex ; 30(1): 31-46, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30958540

RESUMEN

The Fragile X mental retardation protein (FMRP) is involved in many cellular processes and it regulates synaptic and network development in neurons. Its absence is known to lead to intellectual disability, with a wide range of comorbidities including autism. Over the past decades, FMRP research focused on abnormalities both in glutamatergic and GABAergic signaling, and an altered balance between excitation and inhibition has been hypothesized to underlie the clinical consequences of absence of the protein. Using Fmrp knockout mice, we studied an in vitro model of cortical microcircuitry and observed that the loss of FMRP largely affected the electrophysiological correlates of network development and maturation but caused less alterations in single-cell phenotypes. The loss of FMRP also caused a structural increase in the number of excitatory synaptic terminals. Using a mathematical model, we demonstrated that the combination of an increased excitation and reduced inhibition describes best our experimental observations during the ex vivo formation of the network connections.


Asunto(s)
Corteza Cerebral/fisiopatología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/fisiopatología , Modelos Neurológicos , Neuronas/fisiología , Animales , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Redes Neurales de la Computación , Vías Nerviosas/fisiopatología
9.
BMC Neurol ; 20(1): 138, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32295518

RESUMEN

BACKGROUND: Fragile X syndrome (FXS) is the most frequent cause of inherited intellectual disability and the most commonly identified monogenic cause of autism. Recent studies have shown that long-term pathological consequences of FXS are not solely confined to the central nervous system (CNS) but rather extend to other physiological dysfunctions in peripheral organs. To gain insights into possible immune dysfunctions in FXS, we profiled a large panel of immune-related biomarkers in the serum of FXS patients and healthy controls. METHODS: We have used a sensitive and robust Electro Chemi Luminescence (ECL)-based immunoassay to measure the levels of 52 cytokines in the serum of n = 25 FXS patients and n = 29 healthy controls. We then used univariate statistics and multivariate analysis, as well as an advanced unsupervised clustering method, to identify combinations of immune-related biomarkers that could discriminate FXS patients from healthy individuals. RESULTS: While the majority of the tested cytokines were present at similar levels in FXS patients and healthy individuals, nine chemokines, CCL2, CCL3, CCL4, CCL11, CCL13, CCL17, CCL22, CCL26 and CXCL10, were present at much lower levels in FXS patients. Using robust regression, we show that six of these biomarkers (CCL2, CCL3, CCL11, CCL22, CCL26 and CXCL10) were negatively associated with FXS diagnosis. Finally, applying the K-sparse unsupervised clustering method to the biomarker dataset allowed for the identification of two subsets of individuals, which essentially matched the FXS and healthy control categories. CONCLUSIONS: Our data show that FXS patients exhibit reduced serum levels of several chemokines and may therefore exhibit impaired immune responses. The present study also highlights the power of unsupervised clustering methods to identify combinations of biomarkers for diagnosis and prognosis in medicine.


Asunto(s)
Quimiocinas/sangre , Citocinas/sangre , Síndrome del Cromosoma X Frágil/sangre , Adolescente , Biomarcadores/sangre , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Masculino , Pronóstico , Adulto Joven
10.
Genet Med ; 21(4): 816-825, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30190612

RESUMEN

PURPOSE: To assess the contribution of rare variants in the genetic background toward variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive variants. METHODS: We analyzed quantitative clinical information, exome sequencing, and microarray data from 757 probands and 233 parents and siblings who carry disease-associated variants. RESULTS: The number of rare likely deleterious variants in functionally intolerant genes ("other hits") correlated with expression of neurodevelopmental phenotypes in probands with 16p12.1 deletion (n=23, p=0.004) and in autism probands carrying gene-disruptive variants (n=184, p=0.03) compared with their carrier family members. Probands with 16p12.1 deletion and a strong family history presented more severe clinical features (p=0.04) and higher burden of other hits compared with those with mild/no family history (p=0.001). The number of other hits also correlated with severity of cognitive impairment in probands carrying pathogenic CNVs (n=53) or de novo pathogenic variants in disease genes (n=290), and negatively correlated with head size among 80 probands with 16p11.2 deletion. These co-occurring hits involved known disease-associated genes such as SETD5, AUTS2, and NRXN1, and were enriched for cellular and developmental processes. CONCLUSION: Accurate genetic diagnosis of complex disorders will require complete evaluation of the genetic background even after a candidate disease-associated variant is identified.


Asunto(s)
Trastorno Autístico/genética , Moléculas de Adhesión Celular Neuronal/genética , Tamización de Portadores Genéticos , Metiltransferasas/genética , Proteínas del Tejido Nervioso/genética , Proteínas/genética , Trastorno Autístico/fisiopatología , Proteínas de Unión al Calcio , Cromosomas Humanos Par 16/genética , Cognición/fisiología , Proteínas del Citoesqueleto , Variaciones en el Número de Copia de ADN/genética , Femenino , Regulación de la Expresión Génica/genética , Antecedentes Genéticos , Humanos , Masculino , Moléculas de Adhesión de Célula Nerviosa , Padres , Linaje , Fenotipo , Eliminación de Secuencia/genética , Hermanos , Factores de Transcripción
12.
Nature ; 478(7367): 97-102, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21881559

RESUMEN

Both obesity and being underweight have been associated with increased mortality. Underweight, defined as a body mass index (BMI) ≤ 18.5 kg per m(2) in adults and ≤ -2 standard deviations from the mean in children, is the main sign of a series of heterogeneous clinical conditions including failure to thrive, feeding and eating disorder and/or anorexia nervosa. In contrast to obesity, few genetic variants underlying these clinical conditions have been reported. We previously showed that hemizygosity of a ∼600-kilobase (kb) region on the short arm of chromosome 16 causes a highly penetrant form of obesity that is often associated with hyperphagia and intellectual disabilities. Here we show that the corresponding reciprocal duplication is associated with being underweight. We identified 138 duplication carriers (including 132 novel cases and 108 unrelated carriers) from individuals clinically referred for developmental or intellectual disabilities (DD/ID) or psychiatric disorders, or recruited from population-based cohorts. These carriers show significantly reduced postnatal weight and BMI. Half of the boys younger than five years are underweight with a probable diagnosis of failure to thrive, whereas adult duplication carriers have an 8.3-fold increased risk of being clinically underweight. We observe a trend towards increased severity in males, as well as a depletion of male carriers among non-medically ascertained cases. These features are associated with an unusually high frequency of selective and restrictive eating behaviours and a significant reduction in head circumference. Each of the observed phenotypes is the converse of one reported in carriers of deletions at this locus. The phenotypes correlate with changes in transcript levels for genes mapping within the duplication but not in flanking regions. The reciprocal impact of these 16p11.2 copy-number variants indicates that severe obesity and being underweight could have mirror aetiologies, possibly through contrasting effects on energy balance.


Asunto(s)
Índice de Masa Corporal , Cromosomas Humanos Par 16/genética , Dosificación de Gen/genética , Obesidad/genética , Fenotipo , Delgadez/genética , Adolescente , Adulto , Anciano , Envejecimiento , Estatura/genética , Estudios de Casos y Controles , Niño , Preescolar , Estudios de Cohortes , Hibridación Genómica Comparativa , Discapacidades del Desarrollo/genética , Metabolismo Energético/genética , Europa (Continente) , Femenino , Duplicación de Gen/genética , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Cabeza/anatomía & histología , Heterocigoto , Humanos , Lactante , Recién Nacido , Masculino , Trastornos Mentales/genética , Persona de Mediana Edad , Mutación/genética , América del Norte , ARN Mensajero/análisis , ARN Mensajero/genética , Eliminación de Secuencia/genética , Transcripción Genética , Adulto Joven
13.
J Med Genet ; 53(8): 523-32, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27075013

RESUMEN

BACKGROUND: AUTS2 syndrome is an 'intellectual disability (ID) syndrome' caused by genomic rearrangements, deletions, intragenic duplications or mutations disrupting AUTS2. So far, 50 patients with AUTS2 syndrome have been described, but clinical data are limited and almost all cases involved young children. METHODS: We present a detailed clinical description of 13 patients (including six adults) with AUTS2 syndrome who have a pathogenic mutation or deletion in AUTS2. All patients were systematically evaluated by the same clinical geneticist. RESULTS: All patients have borderline to severe ID/developmental delay, 83-100% have microcephaly and feeding difficulties. Congenital malformations are rare, but mild heart defects, contractures and genital malformations do occur. There are no major health issues in the adults; the oldest of whom is now 59 years of age. Behaviour is marked by it is a friendly outgoing social interaction. Specific features of autism (like obsessive behaviour) are seen frequently (83%), but classical autism was not diagnosed in any. A mild clinical phenotype is associated with a small in-frame 5' deletions, which are often inherited. Deletions and other mutations causing haploinsufficiency of the full-length AUTS2 transcript give a more severe phenotype and occur de novo. CONCLUSIONS: The 13 patients with AUTS2 syndrome with unique pathogenic deletions scattered around the AUTS2 locus confirm a phenotype-genotype correlation. Despite individual variations, AUTS2 syndrome emerges as a specific ID syndrome with microcephaly, feeding difficulties, dysmorphic features and a specific behavioural phenotype.


Asunto(s)
Discapacidad Intelectual/genética , Trastornos Mentales/genética , Proteínas/genética , Adulto , Niño , Preescolar , Proteínas del Citoesqueleto , Exones/genética , Femenino , Estudios de Asociación Genética/métodos , Haploinsuficiencia/genética , Humanos , Lactante , Masculino , Microcefalia/genética , Persona de Mediana Edad , Mutación/genética , Fenotipo , Eliminación de Secuencia/genética , Síndrome , Factores de Transcripción , Adulto Joven
14.
PLoS Genet ; 10(4): e1004242, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24763282

RESUMEN

Folate-sensitive fragile sites (FSFS) are a rare cytogenetically visible subset of dynamic mutations. Of the eight molecularly characterized FSFS, four are associated with intellectual disability (ID). Cytogenetic expression results from CGG tri-nucleotide-repeat expansion mutation associated with local CpG hypermethylation and transcriptional silencing. The best studied is the FRAXA site in the FMR1 gene, where large expansions cause fragile X syndrome, the most common inherited ID syndrome. Here we studied three families with FRA2A expression at 2q11 associated with a wide spectrum of neurodevelopmental phenotypes. We identified a polymorphic CGG repeat in a conserved, brain-active alternative promoter of the AFF3 gene, an autosomal homolog of the X-linked AFF2/FMR2 gene: Expansion of the AFF2 CGG repeat causes FRAXE ID. We found that FRA2A-expressing individuals have mosaic expansions of the AFF3 CGG repeat in the range of several hundred repeat units. Moreover, bisulfite sequencing and pyrosequencing both suggest AFF3 promoter hypermethylation. cSNP-analysis demonstrates monoallelic expression of the AFF3 gene in FRA2A carriers thus predicting that FRA2A expression results in functional haploinsufficiency for AFF3 at least in a subset of tissues. By whole-mount in situ hybridization the mouse AFF3 ortholog shows strong regional expression in the developing brain, somites and limb buds in 9.5-12.5dpc mouse embryos. Our data suggest that there may be an association between FRA2A and a delay in the acquisition of motor and language skills in the families studied here. However, additional cases are required to firmly establish a causal relationship.


Asunto(s)
Antígeno 2 Relacionado con Fos/genética , Proteínas Nucleares/genética , Expansión de Repetición de Trinucleótido/genética , Alelos , Sitios Frágiles del Cromosoma/genética , Metilación de ADN/genética , Femenino , Expresión Génica/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética
15.
Am J Med Genet B Neuropsychiatr Genet ; 171(8): 1049-1056, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27380831

RESUMEN

Whole genome sequencing of a severely affected dizygotic twin with an autism spectrum disorder and intellectual disability revealed a compound heterozygous mutation in the HTR7 gene as the only variation not detected in control databases. Each parent carries one allele of the mutation, which is not present in an unaffected stepsister. The HTR7 gene encodes the 5-HT7 serotonin receptor that is involved in brain development, synaptic transmission, and plasticity. The paternally inherited p.W60C variant is situated at an evolutionary conserved nucleotide and predicted damaging by Polyphen2. A mutation akin to the maternally inherited pV286I mutation has been reported to significantly affect the binding characteristics of the receptor. Therefore, the observed sequence alterations provide a first suggestive link between a genetic abnormality in the HTR7 gene and a neurodevelopmental disorder. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Trastorno del Espectro Autista/genética , Receptores de Serotonina/genética , Alelos , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/genética , Niño , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Mutación , Receptores de Serotonina/fisiología , Análisis de Secuencia de ADN , Serotonina/genética , Serotonina/metabolismo , Gemelos Dicigóticos/genética , Gemelos Dicigóticos/psicología
16.
Am J Hum Genet ; 90(6): 1071-8, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22608712

RESUMEN

Williams-Beuren syndrome is a rare contiguous gene syndrome, characterized by intellectual disability, facial dysmorphisms, connective-tissue abnormalities, cardiac defects, structural brain abnormalities, and transient infantile hypercalcemia. Genes lying telomeric to RFC2, including CLIP2, GTF2I and GTF2IRD1, are currently thought to be the most likely major contributors to the typical Williams syndrome cognitive profile, characterized by a better-than-expected auditory rote-memory ability, a relative sparing of language capabilities, and a severe visual-spatial constructive impairment. Atypical deletions in the region have helped to establish genotype-phenotype correlations. So far, however, hardly any deletions affecting only a single gene in the disease region have been described. We present here two healthy siblings with a pure, hemizygous deletion of CLIP2. A putative role in the cognitive and behavioral abnormalities seen in Williams-Beuren patients has been suggested for this gene on the basis of observations in a knock-out mouse model. The presented siblings did not show any of the clinical features associated with the syndrome. Cognitive testing showed an average IQ for both and no indication of the Williams syndrome cognitive profile. This shows that CLIP2 haploinsufficiency by itself does not lead to the physical or cognitive characteristics of the Williams-Beuren syndrome, nor does it lead to the Williams syndrome cognitive profile. Although contribution of CLIP2 to the phenotype cannot be excluded when it is deleted in combination with other genes, our results support the hypothesis that GTF2IRD1 and GTF2I are the main genes causing the cognitive defects associated with Williams-Beuren syndrome.


Asunto(s)
Proteínas Asociadas a Microtúbulos/genética , Síndrome de Williams/genética , Adolescente , Adulto , Secuencia de Bases , Trastornos de la Conducta Infantil/genética , Trastornos del Conocimiento/genética , Femenino , Eliminación de Gen , Genotipo , Haploinsuficiencia , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Lenguaje , Masculino , Modelos Genéticos , Datos de Secuencia Molecular , Proteínas Musculares/genética , Proteínas Nucleares/genética , Fenotipo , Hermanos , Transactivadores/genética , Factores de Transcripción TFII/genética , Factores de Transcripción TFIII
17.
Am J Med Genet A ; 167A(12): 3214-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26358756

RESUMEN

VPS45 mutations cause severe congenital neutropenia (SCN). We report on a girl with SCN and neurological impairment harboring a homozygous p.E238K mutation in VPS45 (vacuolar sorting protein 45). She successfully underwent hematopoietic stem cell transplantation. Our findings delineate the phenotype and indicate a possible genotype-phenotype correlation for neurological involvement.


Asunto(s)
Homocigoto , Mutación/genética , Enfermedades del Sistema Nervioso/etiología , Neutropenia/congénito , Proteínas de Transporte Vesicular/genética , Preescolar , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Femenino , Genotipo , Humanos , Enfermedades del Sistema Nervioso/patología , Neutropenia/complicaciones , Neutropenia/genética , Neutropenia/patología , Fenotipo , Pronóstico
18.
Nat Genet ; 38(9): 999-1001, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16906164

RESUMEN

Submicroscopic genomic copy number changes have been identified only recently as an important cause of mental retardation. We describe the detection of three interstitial, overlapping 17q21.31 microdeletions in a cohort of 1,200 mentally retarded individuals associated with a clearly recognizable clinical phenotype of mental retardation, hypotonia and a characteristic face. The deletions encompass the MAPT and CRHR1 genes and are associated with a common inversion polymorphism.


Asunto(s)
Deleción Cromosómica , Inversión Cromosómica , Cromosomas Humanos Par 17 , Polimorfismo Genético , Adolescente , Adulto , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Preescolar , Estudios de Cohortes , Cara/patología , Femenino , Dosificación de Gen , Frecuencia de los Genes , Haplotipos , Humanos , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Imagen por Resonancia Magnética , Masculino , Hipotonía Muscular/genética , Hipotonía Muscular/fisiopatología , Mapeo Físico de Cromosoma , Prevalencia , Radiografía , Receptores de Hormona Liberadora de Corticotropina/genética , Síndrome , Proteínas tau/genética
19.
Hum Mutat ; 35(11): 1295-300, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25196122

RESUMEN

We report de novo occurrence of the 7p11.2 folate-sensitive fragile site FRA7A in a male with an autistic spectrum disorder (ASD) due to a CGG-repeat expansion mutation (∼450 repeats) in a 5' intron of ZNF713. This expanded allele showed hypermethylation of the adjacent CpG island with reduced ZNF713 expression observed in a proband-derived lymphoblastoid cell line (LCL). His unaffected mother carried an unmethylated premutation (85 repeats). This CGG-repeat showed length polymorphism in control samples (five to 22 repeats). In a second unrelated family, three siblings with ASD and their unaffected father were found to carry FRA7A premutations, which were partially or mosaically methylated. In one of the affected siblings, mitotic instability of the premutation was observed. ZNF713 expression in LCLs in this family was increased in three of these four premutation carriers. A firm link cannot yet be established between ASD and the repeat expansion mutation but plausible pathogenic mechanisms are discussed.


Asunto(s)
Trastorno Autístico/genética , Sitios Frágiles del Cromosoma , Proteínas de Unión al ADN/genética , Estudios de Asociación Genética , Expansión de Repetición de Trinucleótido , Adulto , Alelos , Trastorno Autístico/diagnóstico , Niño , Cromosomas Humanos Par 7 , Islas de CpG , Metilación de ADN , Femenino , Humanos , Hibridación Fluorescente in Situ , Masculino , Linaje , Análisis de Secuencia de ADN , Factores de Transcripción/genética
20.
Am J Med Genet C Semin Med Genet ; 166C(3): 315-26, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25169753

RESUMEN

Mutations in ADNP were recently identified as a frequent cause of syndromic autism, characterized by deficits in social communication and interaction and restricted, repetitive behavioral patterns. Based on its functional domains, ADNP is a presumed transcription factor. The gene interacts closely with the SWI/SNF complex by direct and experimentally verified binding of its C-terminus to three of its core components. A detailed and systematic clinical assessment of the symptoms observed in our patients allows a detailed comparison with the symptoms observed in other SWI/SNF disorders. While the mutational mechanism of the first 10 patients identified suggested a gain of function mechanism, an 11th patient reported here is predicted haploinsufficient. The latter observation may raise hope for therapy, as addition of NAP, a neuroprotective octapeptide named after the first three amino acids of the sequence NAPVSPIQ, has been reported by others to ameliorate some of the cognitive abnormalities observed in a knockout mouse model. It is concluded that detailed clinical and molecular studies on larger cohorts of patients are necessary to establish a better insight in the genotype phenotype correlation and in the mutational mechanism.


Asunto(s)
Trastorno Autístico/genética , Proteínas de Homeodominio/genética , Mutación , Proteínas del Tejido Nervioso/genética , Anomalías Múltiples/genética , Animales , Trastorno Autístico/etiología , Preescolar , ADN Helicasas/genética , ADN Helicasas/metabolismo , Cara/anomalías , Deformidades Congénitas de la Mano/genética , Haploinsuficiencia/genética , Humanos , Lactante , Discapacidad Intelectual/genética , Ratones Noqueados , Micrognatismo/genética , Cuello/anomalías , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oligopéptidos/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA