Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proteomics ; 24(11): e2300089, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38168906

RESUMEN

Much recent research has been dedicated to exploring the utility of extracellular vesicles (EVs) as circulating disease biomarkers. Underpinning this work is the assumption that the molecular cargo of EVs directly reflects the originating cell. Few attempts have been made, however, to empirically validate this on the -omic level. To this end, we have performed an integrative multi-omic analysis of a panel of breast cancer cell lines and corresponding EVs. Whole transcriptome analysis validated that the cellular transcriptome remained stable when cultured cells are transitioned to low serum or serum-free medium for EV collection. Transcriptomic profiling of the isolated EVs indicated a positive correlation between transcript levels in cells and EVs, including disease-associated transcripts. Analysis of the EV proteome verified that HER2 protein is present in EVs, however neither the estrogen (ER) nor progesterone (PR) receptor proteins are detected regardless of cellular expression. Using multivariate analysis, we derived an EV protein signature to infer cellular patterns of ER and HER2 expression, though the ER protein could not be directly detected. Integrative analyses affirmed that the EV proteome and transcriptome captured key phenotypic hallmarks of the originating cells, supporting the potential of EVs for non-invasive monitoring of breast cancers.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Femenino , Proteómica/métodos , Línea Celular Tumoral , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Proteoma/análisis , Proteoma/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Receptores de Estrógenos/metabolismo , Multiómica
2.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498868

RESUMEN

Cannabis sativa (Cannabis) has recently been legalized in multiple countries globally for either its recreational or medicinal use. This, in turn, has led to a marked increase in the number of Cannabis varieties available for use in either market. However, little information currently exists on the genetic distinction between adopted varieties. Such fundamental knowledge is of considerable value and underpins the accelerated development of both a nascent pharmaceutical industry and the commercial recreational market. Therefore, in this study, we sought to assess genetic diversity across 10 Cannabis varieties by undertaking a reduced representation shotgun sequencing approach on 83 individual plants to identify variations which could be used to resolve the genetic structure of the assessed population. Such an approach also allowed for the identification of the genetic features putatively associated with the production of secondary metabolites in Cannabis. Initial analysis identified 3608 variants across the assessed population with phylogenetic analysis of this data subsequently enabling the confident grouping of each variety into distinct subpopulations. Within our dataset, the most diagnostically informative single nucleotide polymorphisms (SNPs) were determined to be associated with the long-terminal repeat (LTRs) class of retroelements, with 172 such SNPs used to fully resolve the genetic structure of the assessed population. These 172 SNPs could be used to design a targeted resequencing panel, which we propose could be used to rapidly screen different Cannabis plants to determine genetic relationships, as well as to provide a more robust, scientific classification of Cannabis varieties as the field moves into the pharmaceutical sphere.


Asunto(s)
Cannabis , Alucinógenos , Cannabis/genética , Cannabis/química , Filogenia , Secuencias Repetidas Terminales , Análisis de Secuencia de ADN , Polimorfismo de Nucleótido Simple , Agonistas de Receptores de Cannabinoides , Variación Genética
3.
Anal Chem ; 93(50): 16787-16795, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34889595

RESUMEN

Epithelial to mesenchymal transition (EMT) results in the genesis of circulating tumor cells (CTCs) from tumor sites and promotes the metastatic capability of CTCs in circulation. In this study, we develop a multiplex surface-enhanced Raman scattering nanotechnology for comprehensive characterization of EMT-associated phenotypes in CTCs, to monitor cancer metastasis. We observe the downregulation of the CTC marker (EpCAM) and the epithelial marker (E-cadherin), as well as the upregulation of a mesenchymal marker (N-cadherin) and a stem cell marker (ABCB5) during the transforming growth factor-ß-induced EMT process in breast cancer cell line models. Additionally, we also find changes in the heterogeneity levels of these selected markers in cells. With this method, we successfully detect the presence of disease in samples from breast cancer patients and characterize EMT-associated phenotypes in their CTCs. Overall, this approach and findings provide a new means for monitoring the EMT process in cancer, insights into the detailed mechanistic progress of the diseases, and have potential for detecting the early occurrence of cancer metastasis.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias , Humanos
4.
Proteomics ; 19(8): e1800156, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30632691

RESUMEN

The field of extracellular vesicle (EV) research has rapidly expanded in recent years, with particular interest in their potential as circulating biomarkers. Proteomic analysis of EVs from clinical samples is complicated by the low abundance of EV proteins relative to highly abundant circulating proteins such as albumin and apolipoproteins. To overcome this, size exclusion chromatography (SEC) has been proposed as a method to enrich EVs whilst depleting protein contaminants; however, the optimal SEC parameters for EV proteomics have not been thoroughly investigated. Here, quantitative evaluation and optimization of SEC are reported for separating EVs from contaminating proteins. Using a synthetic model system followed by cell line-derived EVs, it is found that a 10 mL Sepharose 4B column in PBS produces optimal resolution of EVs from background protein. By spiking-in cancer cell-derived EVs to healthy plasma, it is shown that some cancer EV-associated proteins are detectable by nano-LC-MS/MS when as little as 1% of the total plasma EV number are derived from a cancer cell line. These results suggest that an optimized SEC and nanoLC-MS/MS workflow may be sufficiently sensitive for disease EV protein biomarker discovery from patient-derived clinical samples.


Asunto(s)
Cromatografía en Gel/métodos , Vesículas Extracelulares/metabolismo , Biomarcadores/análisis , Línea Celular , Humanos , Proteínas/análisis , Proteómica , Espectrometría de Masas en Tándem
5.
Analyst ; 142(19): 3573-3578, 2017 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-28861578

RESUMEN

We report a new multiplexed strategy for the electrochemical detection of regional DNA methylation across multiple regions. Using the sequence dependent affinity of bisulfite treated DNA towards gold surfaces, the method integrates the high sensitivity of a micro-fabricated multiplex device comprising a microarray of gold electrodes, with the powerful multiplexing capability of multiplex-PCR. The synergy of this combination enables the monitoring of the methylation changes across several genomic regions simultaneously from as low as 500 pg µl-1 of DNA with no sequencing requirement.


Asunto(s)
Metilación de ADN , Electrodos , Oro , Sulfitos , ADN , Técnicas Electroquímicas , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Secuencia de ADN
6.
BMC Bioinformatics ; 17: 98, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26911705

RESUMEN

BACKGROUND: DNA methylation at a gene promoter region has the potential to regulate gene transcription. Patterns of methylation over multiple CpG sites in a region are often complex and cell type specific, with the region showing multiple allelic patterns in a sample. This complexity is commonly obscured when DNA methylation data is summarised as an average percentage value for each CpG site (or aggregated across CpG sites). True representation of methylation patterns can only be fully characterised by clonal analysis. Deep sequencing provides the ability to investigate clonal DNA methylation patterns in unprecedented detail and scale, enabling the proper characterisation of the heterogeneity of methylation patterns. However, the sheer amount and complexity of sequencing data requires new synoptic approaches to visualise the distribution of allelic patterns. RESULTS: We have developed a new analysis and visualisation software tool "Methpat", that extracts and displays clonal DNA methylation patterns from massively parallel sequencing data aligned using Bismark. Methpat was used to analyse multiplex bisulfite amplicon sequencing on a range of CpG island targets across a panel of human cell lines and primary tissues. Methpat was able to represent the clonal diversity of epialleles analysed at specific gene promoter regions. We also used Methpat to describe epiallelic DNA methylation within the mitochondrial genome. CONCLUSIONS: Methpat can summarise and visualise epiallelic DNA methylation results from targeted amplicon, massively parallel sequencing of bisulfite converted DNA in a compact and interpretable format. Unlike currently available tools, Methpat can visualise the diversity of epiallelic DNA methylation patterns in a sample.


Asunto(s)
Metilación de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Humanos
7.
Langmuir ; 31(23): 6577-87, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-25970769

RESUMEN

Size distribution and concentration measurements of exosomes are essential when investigating their cellular function and uptake. Recently, a particle size distribution and concentration measurement platform known as tunable resistive pulse sensing (TRPS) has seen increased use for the characterization of exosome samples. TRPS measures the brief increase in electrical resistance (a resistive pulse) produced by individual submicrometer/nanoscale particles as they translocate through a size-tunable submicrometer/micrometer-sized pore, embedded in an elastic membrane. Unfortunately, TRPS measurements are susceptible to issues surrounding system stability, where the pore can become blocked by particles, and sensitivity issues, where particles are too small to be detected against the background noise of the system. Herein, we provide a comprehensive analysis of the parameters involved in TRPS exosome measurements and demonstrate the ability to improve system sensitivity and stability by the optimization of system parameters. We also provide the first analysis of system noise, sensitivity cutoff limits, and accuracy with respect to exosome measurements and offer an explicit definition of system sensitivity that indicates the smallest particle diameter that can be detected within the noise of the trans-membrane current. A comparison of exosome size measurements from both TRPS and cryo-electron microscopy is also provided, finding that a significant number of smaller exosomes fell below the detection limit of the TRPS platform and offering one potential insight as to why there is such large variability in the exosome size distribution reported in the literature. We believe the observations reported here may assist others in improving TRPS measurements for exosome samples and other submicrometer biological and nonbiological particles.


Asunto(s)
Técnicas Electroquímicas , Exosomas/ultraestructura , Microscopía por Crioelectrón , Membranas Artificiales , Nanoporos , Tamaño de los Orgánulos , Porosidad , Sensibilidad y Especificidad
8.
Anal Chem ; 86(22): 11125-32, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25324037

RESUMEN

Exosomes show promise as noninvasive biomarkers for cancer, but their effective capture and specific detection is a significant challenge. Herein, we report a multiplexed microfluidic device for highly specific capture and detection of multiple exosome targets using a tunable alternating current electrohydrodynamic (ac-EHD) methodology, referred to as nanoshearing. In our system, electrical body forces generated by ac-EHD act within nanometers of an electrode surface (i.e., within the electrical layer) to generate nanoscaled fluid flow that enhances the specificity of capture and also reduce nonspecific adsorption of weakly bound molecules from the electrode surface. This approach demonstrates the analysis of exosomes derived from cells expressing human epidermal growth factor receptor 2 (HER2) and prostate specific antigen (PSA), and is also capable of specifically isolating exosomes from breast cancer patient samples. The device also exhibited a 3-fold enhancement in detection sensitivity in comparison to hydrodynamic flow based assays (LOD 2760 exosomes/µL for ac-EHD vs LOD 8300 exosomes/µL for hydrodynamic flow; (n = 3)). We propose this approach can potentially have relevance as a simple and rapid quantification tool to analyze exosome targets in biological applications.


Asunto(s)
Técnicas Electroquímicas , Exosomas , Hidrodinámica , Técnicas Analíticas Microfluídicas , Humanos , Células Tumorales Cultivadas
9.
Genome Res ; 20(12): 1639-50, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21045082

RESUMEN

The complexity of the eukaryotic transcriptome is generated by the interplay of transcription initiation, termination, alternative splicing, and other forms of post-transcriptional modification. It was recently shown that RNA transcripts may also undergo cleavage and secondary 5' capping. Here, we show that post-transcriptional cleavage of RNA contributes to the diversification of the transcriptome by generating a range of small RNAs and long coding and noncoding RNAs. Using genome-wide histone modification and RNA polymerase II occupancy data, we confirm that the vast majority of intraexonic CAGE tags are derived from post-transcriptional processing. By comparing exonic CAGE tags to tissue-matched PARE data, we show that the cleavage and subsequent secondary capping is regulated in a developmental-stage- and tissue-specific manner. Furthermore, we find evidence of prevalent RNA cleavage in numerous transcriptomic data sets, including SAGE, cDNA, small RNA libraries, and deep-sequenced size-fractionated pools of RNA. These cleavage products include mRNA variants that retain the potential to be translated into shortened functional protein isoforms. We conclude that post-transcriptional RNA cleavage is a key mechanism that expands the functional repertoire and scope for regulatory control of the eukaryotic transcriptome.


Asunto(s)
Epigénesis Genética/genética , Eucariontes/genética , Perfilación de la Expresión Génica , Variación Genética , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/metabolismo , Péptido Hidrolasas/metabolismo , ARN Mensajero/genética , Análisis de Secuencia de ARN
10.
Biol Reprod ; 88(6): 143, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23616593

RESUMEN

MicroRNAs (miRNAs) have been shown to play key regulatory roles in a range of biological processes, including cell differentiation and development. To identify miRNAs that participate in gonad differentiation, a fundamental and tightly regulated developmental process, we examined miRNA expression profiles at the time of sex determination and during the early fetal differentiation of mouse testes and ovaries using high-throughput sequencing. We identified several miRNAs that were expressed in a sexually dimorphic pattern, including several members of the let-7 family, miR-378, and miR-140-3p. We focused our analysis on the most highly expressed, sexually dimorphic miRNA, miR-140-3p, and found that both miR-140-3p and its more lowly expressed counterpart, the previously annotated guide strand, miR-140-5p, are testis enriched and expressed in testis cords. Analysis of the miR-140-5p/miR-140-3p-null mouse revealed a significant increase in the number of Leydig cells in the developing XY gonad, strongly suggesting an important role for miR-140-5p/miR-140-3p in testis differentiation in mouse.


Asunto(s)
Diferenciación Celular/genética , Células Intersticiales del Testículo/citología , MicroARNs/metabolismo , Testículo/citología , Animales , Recuento de Células , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Testículo/embriología , Testículo/metabolismo
11.
Nucleic Acids Res ; 39(6): 2393-403, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21075793

RESUMEN

The 3' untranslated regions (3'UTRs) of eukaryotic genes regulate mRNA stability, localization and translation. Here, we present evidence that large numbers of 3'UTRs in human, mouse and fly are also expressed separately from the associated protein-coding sequences to which they are normally linked, likely by post-transcriptional cleavage. Analysis of CAGE (capped analysis of gene expression), SAGE (serial analysis of gene expression) and cDNA libraries, as well as microarray expression profiles, demonstrate that the independent expression of 3'UTRs is a regulated and conserved genome-wide phenomenon. We characterize the expression of several 3'UTR-derived RNAs (uaRNAs) in detail in mouse embryos, showing by in situ hybridization that these transcripts are expressed in a cell- and subcellular-specific manner. Our results suggest that 3'UTR sequences can function not only in cis to regulate protein expression, but also intrinsically and independently in trans, likely as noncoding RNAs, a conclusion supported by a number of previous genetic studies. Our findings suggest novel functions for 3'UTRs, as well as caution in the use of 3'UTR sequence probes to analyze gene expression.


Asunto(s)
Regiones no Traducidas 3' , ARN no Traducido/metabolismo , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Desarrollo Embrionario/genética , Exones , Perfilación de la Expresión Génica , Humanos , Ratones , Procesamiento Postranscripcional del ARN
12.
Sci Rep ; 13(1): 9547, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308782

RESUMEN

Age structure information of animal populations is fundamental to their conservation and management. In fisheries, age is routinely obtained by counting daily or annual increments in calcified structures (e.g., otoliths) which requires lethal sampling. Recently, DNA methylation has been shown to estimate age using DNA extracted from fin tissue without the need to kill the fish. In this study we used conserved known age-associated sites from the zebrafish (Danio rerio) genome to predict the age of golden perch (Macquaria ambigua), a large-bodied native fish from eastern Australia. Individuals aged using validated otolith techniques from across the species' distribution were used to calibrate three epigenetic clocks. One clock was calibrated using daily (daily clock) and another with annual (annual clock) otolith increment counts, respectively. A third used both daily and annual increments (universal clock). We found a high correlation between the otolith and epigenetic age (Pearson correlation > 0.94) across all clocks. The median absolute error was 2.4 days in the daily clock, 184.6 days in the annual clock, and 74.5 days in the universal clock. Our study demonstrates the emerging utility of epigenetic clocks as non-lethal and high-throughput tools for obtaining age estimates to support the management of fish populations and fisheries.


Asunto(s)
Percas , Perciformes , Animales , Metilación de ADN , Pez Cebra , Australia
13.
Methods Mol Biol ; 2392: 143-158, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34773621

RESUMEN

While conventional PCR applications typically focus on a single PCR assay per reaction, multiplex PCR applications are a convenient and scalable solution becoming more routine. Multiplex methods can be applied to virtually any DNA template source (e.g., plant or human DNA, FFPE DNA isolated from clinical samples, bisulfite-converted DNA for DNA methylation analysis), and offers a cheap, convenient, and scalable solution for experiments that require characterization and analysis of multiple genomic regions.This method will detail the procedures to successfully design, screen, and prepare multiplex amplicon libraries; as well as supporting instructions on how to prepare these libraries for sequencing on Illumina, Ion Torrent, and Oxford Nanopore platforms. The flexibility of assay design allows means that custom multiplex panels can range in size from two assays up to a few hundred amplicons or more. Notably, the method described here is also amenable to whatever PCR buffer system the user prefers to use, making the system globally adaptable to the needs and preferences of the end user.


Asunto(s)
Reacción en Cadena de la Polimerasa Multiplex , ADN , Metilación de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Nanoporos , Análisis de Secuencia de ADN
14.
Sci Rep ; 12(1): 16051, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163372

RESUMEN

In fragmented DNA, PCR-based methods quantify the number of intact regions at a specific amplicon length. However, the relationship between the population of DNA fragments within a sample and the likelihood they will amplify has not been fully described. To address this, we have derived a mathematical equation that relates the distribution profile of a stochastically fragmented DNA sample to the probability that a DNA fragment within that sample can be amplified by any PCR assay of arbitrary length. Two panels of multiplex PCR assays for quantifying fragmented DNA were then developed: a four-plex panel that can be applied to any human DNA sample and used to estimate the percentage of regions that are intact at any length; and a two-plex panel optimized for quantifying circulating cell-free DNA (cfDNA). For these assays, regions of the human genome least affected by copy number aberration were identified and selected; within these copy-neutral regions, each PCR assay was designed to amplify both genomic and bisulfite-converted DNA; and all assays were validated for use in both conventional qPCR and droplet-digital PCR. Finally, using the cfDNA-optimized assays we find evidence of universally conserved nucleosome positioning among individuals.


Asunto(s)
Ácidos Nucleicos Libres de Células , Ácidos Nucleicos Libres de Células/genética , ADN/genética , Fragmentación del ADN , Formaldehído , Genoma Humano , Humanos , Nucleosomas , Reacción en Cadena en Tiempo Real de la Polimerasa , Sulfitos
15.
Epigenomes ; 6(1)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35225958

RESUMEN

The efficiency of conventional screening programs to identify early-stage malignancies can be limited by the low number of cancers recommended for screening as well as the high cumulative false-positive rate, and associated iatrogenic burden, resulting from repeated multimodal testing. The opportunity to use minimally invasive liquid biopsy testing to screen asymptomatic individuals at-risk for multiple cancers simultaneously could benefit from the aggregated diseases prevalence and a fixed specificity. Increasing both latter parameters is paramount to mediate high positive predictive value-a useful metric to evaluate a screening test accuracy and its potential harm-benefit. Thus, the use of a single test for multi-cancer early detection (stMCED) has emerged as an appealing strategy for increasing early cancer detection rate efficiency and benefit population health. A recent flurry of these stMCED technologies have been reported for clinical potential; however, their development is facing unique challenges to effectively improve clinical cost-benefit. One promising avenue is the analysis of circulating tumour DNA (ctDNA) for detecting DNA methylation biomarker fingerprints of malignancies-a hallmark of disease aetiology and progression holding the potential to be tissue- and cancer-type specific. Utilizing panels of epigenetic biomarkers could potentially help to detect earlier stages of malignancies as well as identify a tumour of origin from blood testing, useful information for follow-up clinical decision making and subsequent patient care improvement. Overall, this review collates the latest and most promising stMCED methodologies, summarizes their clinical performances, and discusses the specific requirements multi-cancer tests should meet to be successfully implemented into screening guidelines.

16.
Life (Basel) ; 12(3)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35330114

RESUMEN

Protein and drug engineering comprises a major part of the medical and research industries, and yet approaches to discovering and understanding therapeutic molecular interactions in biological systems rely on trial and error. The general approach to molecular discovery involves screening large libraries of compounds, proteins, or antibodies, or in vivo antibody generation, which could be considered "bottom-up" approaches to therapeutic discovery. In these bottom-up approaches, a minimal amount is known about the therapeutics at the start of the process, but through meticulous and exhaustive laboratory work, the molecule is characterised in detail. In contrast, the advent of "big data" and access to extensive online databases and machine learning technologies offers promising new avenues to understanding molecular interactions. Artificial intelligence (AI) now has the potential to predict protein structure at an unprecedented accuracy using only the genetic sequence. This predictive approach to characterising molecular structure-when accompanied by high-quality experimental data for model training-has the capacity to invert the process of molecular discovery and characterisation. The process has potential to be transformed into a top-down approach, where new molecules can be designed directly based on the structure of a target and the desired function, rather than performing screening of large libraries of molecular variants. This paper will provide a brief evaluation of bottom-up approaches to discovering and characterising biological molecules and will discuss recent advances towards developing top-down approaches and the prospects of this.

17.
Mol Ecol Resour ; 22(6): 2275-2284, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35427433

RESUMEN

Age is a fundamental life history attribute that is used to understand the dynamics of wild animal populations. Unfortunately, most animals do not have a practical or nonlethal method to determine age. This makes it difficult for wildlife managers to carry out population assessments, particularly for elusive and long-lived fauna such as marine turtles. In this study, we present an epigenetic clock that predicts the age of marine turtles from skin biopsies. The model was developed and validated using DNA from known-age green turtles (Chelonia mydas) from two captive populations, and mark-recapture wild turtles with known time intervals between captures. Our method, based on DNA methylation levels at 18 CpG sites, was highly accurate with a median absolute error of 2.1 years (4.7% of maximum age in data set). This is the first epigenetic clock developed for a reptile and illustrates their broad applicability across a broad variety of vertebrate species. It has the potential to transform marine turtle management through a nonlethal and inexpensive method to provide key life history information.


Asunto(s)
Tortugas , Animales , Animales Salvajes , Epigénesis Genética , Tortugas/genética , Vertebrados
18.
Clin Transl Med ; 12(10): e1030, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36178085

RESUMEN

BACKGROUND: Prostate cancer is a clinically heterogeneous disease with a subset of patients rapidly progressing to lethal-metastatic prostate cancer. Current clinicopathological measures are imperfect predictors of disease progression. Epigenetic changes are amongst the earliest molecular changes in tumourigenesis. To find new prognostic biomarkers to enable earlier intervention and improved outcomes, we performed methylome sequencing of DNA from patients with localised prostate cancer and long-term clinical follow-up. METHODS: We used whole-genome bisulphite sequencing (WGBS) to comprehensively map and compare DNA methylation of radical prostatectomy tissue between patients with lethal disease (n = 7) and non-lethal (n = 8) disease (median follow-up 19.5 years). Validation of differentially methylated regions (DMRs) was performed in an independent cohort (n = 185, median follow-up 15 years) using targeted multiplex bisulphite sequencing of candidate regions. Survival was assessed via univariable and multivariable analyses including clinicopathological measures (log-rank and Cox regression models). RESULTS: WGBS data analysis identified cancer-specific methylation patterns including CpG island hypermethylation, and hypomethylation of repetitive elements, with increasing disease risk. We identified 1420 DMRs associated with prostate cancer-specific mortality (PCSM), which showed enrichment for gene sets downregulated in prostate cancer and de novo methylated in cancer. Through comparison with public prostate cancer datasets, we refined the DMRs to develop an 18-gene prognostic panel. Applying this panel to an independent cohort, we found significant associations between PCSM and hypermethylation at EPHB3, PARP6, TBX1, MARCH6 and a regulatory element within CACNA2D4. Strikingly in a multivariable model, inclusion of CACNA2D4 methylation was a better predictor of PCSM versus grade alone (Harrell's C-index: 0.779 vs. 0.684). CONCLUSIONS: Our study provides detailed methylome maps of non-lethal and lethal prostate cancer and identifies novel genic regions that distinguish these patient groups. Inclusion of our DNA methylation biomarkers with existing clinicopathological measures improves prognostic models of prostate cancer mortality, and holds promise for clinical application.


Asunto(s)
Epigenoma , Neoplasias de la Próstata , ADP Ribosa Transferasas/genética , ADN , Epigénesis Genética/genética , Humanos , Masculino , Pronóstico , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Sulfitos
19.
Eur J Endocrinol ; 187(5): 607-615, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36047744

RESUMEN

Background: Testicular adrenal rest tumors (TART) are a common complication of unknown cellular origin in patients with congenital adrenal hyperplasia (CAH). These benign tumors have both adrenal and testicular characteristics and are hypothesized to either derive from cells of adrenal origin from the fetal adrenogonadal primordium or by atypical differentiation of adult Leydig-progenitor cells. Objective: This study aims to unravel the identity and etiology of TART. Methods: Co-expression of adrenal-specific CYP11B1 and Leydig cell-specific HSD17B3 in TART was studied using immunohistochemistry. We studied the possibility of TART being derived from atypical differentiation of adult Leydig-progenitor cells by the quantification of adrenal-specific enzyme expression upon adrenocorticotrophic hormone (ACTH)-like stimulation of ex vivo cultured platelet-derived growth factor receptor alpha-positive cells. By comparing the transcriptome of TART (n = 16) with the transcriptome of fetal adrenal (n = 13), fetal testis (n = 5), adult adrenal (n = 11), and adult testis (n = 10) tissues, we explored the identity of TART. Results: We demonstrate co-expression of adrenal-specific CYP11B1 and testis-specific HSD17B3 in TART cells, indicating the existence of a distinct TART cell exhibiting both adrenal and testicular characteristics. Ex vivo cultured adult Leydig-progenitor cells did not express the ACTH-receptor MC2R but did express CYP11B1 upon stimulation. Unsupervised clustering of transcriptome data showed that TART was most similar to adult adrenal tissue, followed by adult testis tissue, and least similar to either fetal tissue. Conclusion: Our data suggest that TART is induced - most likely via activation of a cAMP/protein kinase A-dependent receptor - from a progenitor cell into a unique mature adrenal-like cell type, sometimes exhibiting both adrenal and testicular features.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Tumor de Resto Suprarrenal , Neoplasias Testiculares , Hiperplasia Suprarrenal Congénita/complicaciones , Tumor de Resto Suprarrenal/genética , Hormona Adrenocorticotrópica , Adulto , Proteínas Quinasas Dependientes de AMP Cíclico , Feto , Humanos , Masculino , Receptores del Factor de Crecimiento Derivado de Plaquetas , Esteroide 11-beta-Hidroxilasa , Neoplasias Testiculares/complicaciones
20.
Mol Ecol Resour ; 21(7): 2324-2332, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34161658

RESUMEN

Age-based demography is fundamental to management of wild fish populations. Age estimates for individuals can determine rates of change in key life-history parameters such as length, maturity, mortality and fecundity. These age-based characteristics are critical for population viability analysis in endangered species and for developing sustainable harvest strategies. For teleost fish, age has traditionally been determined by counting increments formed in calcified structures such as otoliths. However, the collection of otoliths is lethal and therefore undesirable for threatened species. At a molecular level, age can be predicted by measuring DNA methylation. Here, we use previously identified age-associated sites of DNA methylation in zebrafish (Danio rerio) to develop two epigenetic clocks for three threatened freshwater fish species. One epigenetic clock was developed for the Australian lungfish (Neoceratodus forsteri) and the second for the Murray cod (Maccullochella peelii) and Mary River cod (Maccullochella mariensis). Age estimation models were calibrated using either known-age individuals, ages derived from otoliths or bomb radiocarbon dating of scales. We demonstrate a high Pearson's correlation between the chronological and predicted age in both the Lungfish clock (cor = .98) and Maccullochella clock (cor = .92). The median absolute error rate for both epigenetic clocks was also low (Lungfish = 0.86 years; Maccullochella = 0.34 years). This study demonstrates the transferability of DNA methylation sites for age prediction between highly phylogenetically divergent fish species. Given the method is nonlethal and suited to automation, age prediction by DNA methylation has the potential to improve fisheries and other wildlife management settings.


Asunto(s)
Especies en Peligro de Extinción , Ríos , Animales , Australia , Metilación de ADN , Humanos , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA