Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Arch Toxicol ; 95(1): 283-298, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33025067

RESUMEN

Health risk associated with the use of combustible cigarettes is well characterized and numerous epidemiological studies have been published for many years. Since more than a decade, innovative non-combusted tobacco products have emerged like heated tobacco products (HTP) or electronic cigarettes (EC). Long-term effects of these new products on health remain, however, unknown and there is a need to characterize associated potential health risks. The time dedicated to epidemiological data generation (at least 20 to 40 years for cancer endpoint), though, is not compatible with innovative development. Surrogates need, therefore, to be developed. In this work, non-cancer and cancer risks were estimated in a range of HTP and commercial combustible cigarettes based upon their harmful and potentially harmful constituent yields in aerosols and smoke, respectively. It appears that mean lifetime cancer risk values were decreased by more than one order of magnitude when comparing HTPs and commercial cigarettes, and significantly higher margin of exposure for non-cancer risk was observed for HTPs when compared to commercial cigarettes. The same approach was applied to two commercial ECs. Similar results were also found for this category of products. Despite uncertainties related to the factors used for the calculations and methodological limitations, this approach is valuable to estimate health risks associated to the use of innovative products. Moreover, it acts as predictive tool in absence of long-term epidemiological data. Furthermore, both cancer and non-cancer risks estimated for HTPs and ECs highlight the potential of reduced risk for non-combusted products when compared to cigarette smoking.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Cigarrillo Electrónico a Vapor/efectos adversos , Sistemas Electrónicos de Liberación de Nicotina , Neoplasias/epidemiología , Productos de Tabaco/efectos adversos , Vapeo/efectos adversos , Aerosoles , Humanos , Exposición por Inhalación , Neoplasias/diagnóstico , Medición de Riesgo , Factores de Riesgo
2.
Chem Res Toxicol ; 33(2): 657-668, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31859484

RESUMEN

A broad range of commercially available electronic cigarette (e-cigarette) systems were tested for levels of emissions of harmful and potentially harmful constituents (HPHC), with a particular focus on the carbonyls: acetaldehyde, acrolein, and formaldehyde. The tobacco-specific nitrosamines N'-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-bipyridyl)-1-butanone; the elements arsenic, cadmium, chromium, lead, and nickel; benzene; 1,3-butadiene; and benzo(a)pyrene were also quantified. The results show that except for the levels of carbonyls, all types of e-cigarettes performed in a similar manner, and emission levels for HPHCs were generally not quantifiable. However, levels of carbonyls, especially formaldehyde, were highly variable. Overall, the lowest levels of formaldehyde were observed in cartridge systems, which generally achieved substantial reductions in yields in comparison with cigarette smoke. Formaldehyde levels in open tank systems were variable; however, the median formaldehyde levels across different brands were substantially lower than the formaldehyde levels in cigarette smoke. The results for variable-power devices operated at the highest voltage confirmed existing literature data regardless of orientation and differences in puffing regimes. Furthermore, our results show that many products deliver consistent HPHC yields over a broad range of testing conditions (with minimal variability from one device to another, under a range of puffing conditions). However, some products exhibit high variability in emissions of HPHCs. The use of air blanks is further highlighted to assess nonproduct-related contributions to HPHC levels to avoid misrepresentation of the data. Overall, our results highlight that some but not all electronic cigarettes deliver low levels of carbonyls consistently across the full e-liquid depletion cycle under different test conditions. The need for further research and standardization work on assessment of variable-voltage electronic cigarettes is emphasized.


Asunto(s)
Acetaldehído/análisis , Acroleína/análisis , Sistemas Electrónicos de Liberación de Nicotina , Formaldehído/análisis , Sustancias Peligrosas/análisis , Aerosoles/análisis
4.
Toxicol Rep ; 7: 1344-1349, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33102137

RESUMEN

This study analyzed commercial waterpipe tobacco products in accordance with the newly developed ISO 22486 as well as with commercial waterpipes and charcoals using the ISO 22486 puffing regime for comparison. The aerosols from these products were analyzed for their nicotine, humectant, tobacco specific nitrosamine, carbonyl, benzo[a]pyrene, and metal yields. Significant differences were observed among the waterpipe tobacco products when analyzed in accordance with the ISO standard 22486 and with different commercial waterpipes and charcoals. The concentrations of CO and benzo[a]pyrene observed in the consumers' configuration using the ISO 22486 puffing regime (with lit charcoal) were higher than those obtained with the ISO standard using electrical heating, with the yields for carbonyl compounds being lower or higher. The use of the recently published ISO standard for generating water pipe tobacco aerosols should be complemented with analysis by using the consumers' configuration. The necessity for this was demonstrated by the differences in CO and benzo[a]pyrene yields in the present work. It appears that the temperature (280°C) selected for electrical heating of waterpipe tobacco products in ISO 22486 is somewhat lower than that obtained with commercial charcoals, resulting in a generally lower yield of nicotine and total collected matter. In addition, there is a need to evaluate the contribution of commercial charcoals to the concentration of constituents in waterpipe aerosols. This is particularly true for compounds resulting from charcoal combustion, such as CO and benzo[a]pyrene.

5.
Toxicol Rep ; 6: 222-231, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30886823

RESUMEN

A new Kentucky reference cigarette, 1R6F, has been manufactured to replace the depleting 3R4F reference cigarette. The 3R4F Kentucky reference cigarettes have been widely used as monitor or comparator cigarettes for mainstream smoke analysis and in vitro and in vivo toxicological data of cigarettes and novel tobacco products. Both reference cigarettes were analyzed in the same laboratory during the same period of time with the goal of performing a comparison of 3R4F and 1R6F. On the basis of the results obtained from aerosol chemistry and in vitro assays, we consider that the 1R6F reference cigarette is a suitable replacement for the 3R4F reference cigarette as a comparator/monitor cigarette. Its specific use as a comparator for novel tobacco products was checked on the basis of a comparative test with the Tobacco Heating System 2.2 as an example.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA