Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Theor Popul Biol ; 156: 46-65, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38310975

RESUMEN

Nonpharmaceutical interventions (NPI) are an important tool for countering pandemics such as COVID-19. Some are cheap; others disrupt economic, educational, and social activity. The latter force governments to balance the health benefits of reduced infection and death against broader lockdown-induced societal costs. A literature has developed modeling how to optimally adjust lockdown intensity as an epidemic evolves. This paper extends that literature by augmenting the classic SIR model with additional states and flows capturing decay over time in vaccine-conferred immunity, the possibility that mutations create variants that erode immunity, and that protection against infection erodes faster than protecting against severe illness. As in past models, we find that small changes in parameter values can tip the optimal response between very different solutions, but the extensions considered here create new types of solutions. In some instances, it can be optimal to incur perpetual epidemic waves even if the uncontrolled infection prevalence would settle down to a stable intermediate level.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Pandemias , Conducta Social , Mutación
2.
Eur J Oper Res ; 311(1): 233-250, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37342758

RESUMEN

The COVID-19 pandemic has devastated lives and economies around the world. Initially a primary response was locking down parts of the economy to reduce social interactions and, hence, the virus' spread. After vaccines have been developed and produced in sufficient quantity, they can largely replace broad lock downs. This paper explores how lockdown policies should be varied during the year or so gap between when a vaccine is approved and when all who wish have been vaccinated. Are vaccines and lockdowns substitutes during that crucial time, in the sense that lockdowns should be reduced as vaccination rates rise? Or might they be complementary with the prospect of imminent vaccination increasing the value of stricter lockdowns, since hospitalization and death averted then may be permanently prevented, not just delayed? We investigate this question with a simple dynamic optimization model that captures both epidemiological and economic considerations. In this model, increasing the rate of vaccine deployment may increase or reduce the optimal total lockdown intensity and duration, depending on the values of other model parameters. That vaccines and lockdowns can act as either substitutes or complements even in a relatively simple model casts doubt on whether in more complicated models or the real world one should expect them to always be just one or the other. Within our model, for parameter values reflecting conditions in developed countries, the typical finding is to ease lockdown intensity gradually after substantial shares of the population have been vaccinated, but other strategies can be optimal for other parameter values. Reserving vaccines for those who have not yet been infected barely outperforms simpler strategies that ignore prior infection status. For certain parameter combinations, there are instances in which two quite different policies can perform equally well, and sometimes very small increases in vaccine capacity can tip the optimal solution to one that involves much longer and more intense lockdowns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA