Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Mol Cell Cardiol ; 185: 26-37, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37797718

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited cardiac disease. Up to 40% of cases are associated with heterozygous mutations in myosin binding protein C (cMyBP-C, MYBPC3). Most of these mutations lead to premature termination codons (PTC) and patients show reduction of functional cMyBP-C. This so-called haploinsufficiency most likely contributes to disease development. We analyzed mechanisms underlying haploinsufficiency using cardiac tissue from HCM-patients with truncation mutations in MYBPC3 (MYBPC3trunc). We compared transcriptional activity, mRNA and protein expression to donor controls. To differentiate between HCM-specific and general hypertrophy-induced mechanisms we used patients with left ventricular hypertrophy due to aortic stenosis (AS) as an additional control. We show that cMyBP-C haploinsufficiency starts at the mRNA level, despite hypertrophy-induced increased transcriptional activity. Gene set enrichment analysis (GSEA) of RNA-sequencing data revealed an increased expression of NMD-components. Among them, Up-frameshift protein UPF3B, a regulator of NMD was upregulated in MYBPC3trunc patients and not in AS-patients. Strikingly, we show that in sarcomeres UPF3B but not UPF1 and UPF2 are localized to the Z-discs, the presumed location of sarcomeric protein translation. Our data suggest that cMyBP-C haploinsufficiency in HCM-patients is established by UPF3B-dependent NMD during the initial translation round at the Z-disc.


Asunto(s)
Cardiomiopatía Hipertrófica , Miocitos Cardíacos , Humanos , Cardiomiopatía Hipertrófica/metabolismo , Haploinsuficiencia , Hipertrofia/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
2.
Ann Rheum Dis ; 81(1): 124-131, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34583923

RESUMEN

OBJECTIVES: Giant cell arteritis (GCA) is the most common primary vasculitis, preferentially affecting the aorta and its large-calibre branches. An imbalance between proinflammatory CD4+ T helper cell subsets and regulatory T cells (Tregs) is thought to be involved in the pathogenesis of GCA and Treg dysfunction has been associated with active disease. Our work aims to explore the aetiology of Treg dysfunction and the way it is affected by remission-inducing immunomodulatory regimens. METHODS: A total of 41 GCA patients were classified into active disease (n=14) and disease in remission (n=27). GCA patients' and healthy blood donors' (HD) Tregs were sorted and subjected to transcriptome and phenotypic analysis. RESULTS: Transcriptome analysis revealed 27 genes, which were differentially regulated between GCA-derived and HD-derived Tregs. Among those, we identified transcription factors, glycolytic enzymes and IL-2 signalling mediators. We confirmed the downregulation of forkhead box P3 (FOXP3) and interferon regulatory factor 4 (IRF4) at protein level and identified the ineffective induction of glycoprotein A repetitions predominant (GARP) and CD25 as well as the reduced T cell receptor (TCR)-induced calcium influx as correlates of Treg dysfunction in GCA. Inhibition of glycolysis in HD-derived Tregs recapitulated most identified dysfunctions of GCA Tregs, suggesting the central pathogenic role of the downregulation of the glycolytic enzymes. Separate analysis of the subgroup of tocilizumab-treated patients identified the recovery of the TCR-induced calcium influx and the Treg suppressive function to associate with disease remission. CONCLUSIONS: Our findings suggest that low glycolysis and calcium signalling account for Treg dysfunction and inflammation in GCA.


Asunto(s)
Factores de Transcripción Forkhead/genética , Arteritis de Células Gigantes/tratamiento farmacológico , Arteritis de Células Gigantes/genética , Factores Reguladores del Interferón/genética , Linfocitos T Reguladores/fisiología , Anciano , Anticuerpos Monoclonales Humanizados/uso terapéutico , Calcio/metabolismo , Señalización del Calcio/genética , Estudios de Casos y Controles , Regulación hacia Abajo , Femenino , Perfilación de la Expresión Génica , Arteritis de Células Gigantes/inmunología , Glucólisis/genética , Humanos , Agentes Inmunomoduladores/uso terapéutico , Subunidad alfa del Receptor de Interleucina-2/genética , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Fenotipo
3.
Mol Ther ; 29(8): 2535-2553, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-33831558

RESUMEN

Cellular therapies based on induced pluripotent stem cells (iPSCs) come out of age and an increasing number of clinical trials applying iPSC-based transplants are ongoing or in preparation. Recent studies, however, demonstrated a high number of small-scale mutations in iPSCs. Although the mutational load in iPSCs seems to be largely derived from their parental cells, it is still unknown whether reprogramming may enrich for individual mutations that could lead to loss of functionality and tumor formation from iPSC derivatives. 30 hiPSC lines were analyzed by whole exome sequencing. High accuracy amplicon sequencing showed that all analyzed small-scale variants pre-existed in their parental cells and that individual mutations present in small subpopulations of parental cells become enriched among hiPSC clones during reprogramming. Among those, putatively actionable driver mutations affect genes related to cell-cycle control, cell death, and pluripotency and may confer a selective advantage during reprogramming. Finally, a short hairpin RNA (shRNA)-based experimental approach was applied to provide additional evidence for the individual impact of such genes on the reprogramming efficiency. In conclusion, we show that enriched mutations in curated onco- and tumor suppressor genes may account for an increased tumor risk and impact the clinical value of patient-derived hiPSCs.


Asunto(s)
Células Clonales/citología , Secuenciación del Exoma/métodos , Células Madre Pluripotentes Inducidas/citología , Mutación , Neoplasias/genética , Anciano , Ciclo Celular , Muerte Celular , Diferenciación Celular , Línea Celular , Células Cultivadas , Reprogramación Celular , Células Clonales/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Pluripotentes Inducidas/química , Neoplasias/patología
4.
J Gen Physiol ; 155(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37656049

RESUMEN

Myosin heavy chain (MyHC) is the main determinant of contractile function. Human ventricular cardiomyocytes (CMs) predominantly express the ß-isoform. We previously demonstrated that ∼80% of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) express exclusively ß-MyHC after long-term culture on laminin-coated glass coverslips. Here, we investigated the impact of enzymatically detaching hESC-CMs after long-term culture and subsequently replating them for characterization of cellular function. We observed that force-related kinetic parameters, as measured in a micromechanical setup, resembled α- rather than ß-MyHC-expressing myofibrils, as well as changes in calcium transients. Single-cell immunofluorescence analysis revealed that replating hESC-CMs led to rapid upregulation of α-MyHC, as indicated by increases in exclusively α-MyHC- and in mixed α/ß-MyHC-expressing hESC-CMs. A comparable increase in heterogeneity of MyHC isoform expression was also found among individual human induced pluripotent stem cell (hiPSC)-derived CMs after replating. Changes in MyHC isoform expression and cardiomyocyte function induced by replating were reversible in the course of the second week after replating. Gene enrichment analysis based on RNA-sequencing data revealed changes in the expression profile of mechanosensation/-transduction-related genes and pathways, especially integrin-associated signaling. Accordingly, the integrin downstream mediator focal adhesion kinase (FAK) promoted ß-MyHC expression on a stiff matrix, further validating gene enrichment analysis. To conclude, detachment and replating induced substantial changes in gene expression, MyHC isoform composition, and function of long-term cultivated human stem cell-derived CMs, thus inducing alterations in mechanosensation/-transduction, that need to be considered, particularly for downstream in vitro assays.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miosinas , Cadenas Pesadas de Miosina/genética , Integrinas
5.
Cell Rep ; 41(8): 111702, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36417853

RESUMEN

Disorganization of the basic contractile unit of muscle cells, i.e., the sarcomeres, leads to suboptimal force generation and is a hallmark of muscle atrophy. Here, we demonstrate that the nuclear role of SENP7 deSUMOylase is pivotal for sarcomere organization. SENP7 expression is temporally upregulated in mature muscle cells and directly regulates transcription of the myosin heavy chain (MyHC-IId) gene. We identify SENP7-dependent deSUMOylation of flightless-1 (Fli-I) as a signal for Fli-I association with scaffold attachment factor b1 (Safb1). SENP7 deficiency leads to higher Fli-I SUMOylation and lower chromatin residency of Safb1, thus generating transcriptionally incompetent chromatin conformation on MyHC-IId. Consequently, lower expression of MyHC-IId causes sarcomere disorganization and disrupted muscle cell contraction. Remarkably, cachexia signaling impedes the SENP7-governed transcriptional program, leading to muscle atrophy, with profound loss of motor protein MyHC-IId. We propose a SENP7-driven distinct transcription program as paramount for muscle cell function, which was found targeted in cachexia.


Asunto(s)
Caquexia , Sarcómeros , Humanos , Sarcómeros/metabolismo , Caquexia/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/complicaciones , Cadenas Pesadas de Miosina/metabolismo , Cromatina , Endopeptidasas/metabolismo
6.
Science ; 376(6599): 1343-1347, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35709278

RESUMEN

Effective tissue repair after myocardial infarction entails a vigorous angiogenic response, guided by incompletely defined immune cell-endothelial cell interactions. We identify the monocyte- and macrophage-derived cytokine METRNL (meteorin-like) as a driver of postinfarction angiogenesis and high-affinity ligand for the stem cell factor receptor KIT (KIT receptor tyrosine kinase). METRNL mediated angiogenic effects in cultured human endothelial cells through KIT-dependent signaling pathways. In a mouse model of myocardial infarction, METRNL promoted infarct repair by selectively expanding the KIT-expressing endothelial cell population in the infarct border zone. Metrnl-deficient mice failed to mount this KIT-dependent angiogenic response and developed severe postinfarction heart failure. Our data establish METRNL as a KIT receptor ligand in the context of ischemic tissue repair.


Asunto(s)
Adipoquinas , Citocinas , Infarto del Miocardio , Neovascularización Fisiológica , Factores de Crecimiento Nervioso , Proteínas Proto-Oncogénicas c-kit , Animales , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Células Endoteliales/metabolismo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/genética , Ligandos , Macrófagos/metabolismo , Ratones , Ratones Mutantes , Infarto del Miocardio/complicaciones , Infarto del Miocardio/fisiopatología , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo
7.
Stem Cells Int ; 2021: 9041423, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34580592

RESUMEN

In recent years, stem cell-derived organoids have become a cell culture standard that is widely used for studying various scientific issues that were previously investigated through animal experiments and using common tumor cell lines. After their initial hype, concerns regarding their standardization have been raised. Here, we aim to provide some insights into our experience in standardizing murine colonic epithelial organoids, which we use as a replacement method for research on inflammatory bowel disease. Considering good scientific practice, we examined various factors that might challenge the design and outcome of experiments using these organoids. First, to analyze the impact of antibiotics/antimycotics, we performed kinetic experiments using ZellShield® and measured the gene expression levels of the tight junction markers Ocln, Zo-1, and Cldn4, the proliferation marker Ki67, and the proinflammatory cytokine Tnfα. Because we found no differences between cultivations with and without ZellShield®, we then performed infection experiments using the probiotic Escherichia coli Nissle 1917 as an already established model setup to analyze the impact of technical, interexperimental, and biologic replicates. We demonstrate that interexperimental differences pose the greatest challenge for reproducibility and explain our strategies for addressing these differences. Additionally, we conducted infection experiments using freshly isolated and cryopreserved/thawed organoids and found that cryopreservation influenced the experimental outcome during early passages. Formerly cryopreserved colonoids exhibited a premature appearance and a higher proinflammatory response to bacterial stimulation. Therefore, we recommend analyzing the growth characteristics and reliability of cryopreserved organoids before to their use in experiments together with conducting several independent experiments under standardized conditions. Taken together, our findings demonstrate that organoid culture, if standardized, constitutes a good tool for reducing the need for animal experiments and might further improve our understanding of, for example, the role of epithelial cells in inflammatory bowel disease development.

8.
Stem Cell Reports ; 16(10): 2488-2502, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34560000

RESUMEN

Therapeutic application of induced pluripotent stem cell (iPSC) derivatives requires comprehensive assessment of the integrity of their nuclear and mitochondrial DNA (mtDNA) to exclude oncogenic potential and functional deficits. It is unknown, to which extent mtDNA variants originate from their parental cells or from de novo mutagenesis, and whether dynamics in heteroplasmy levels are caused by inter- and intracellular selection or genetic drift. Sequencing of mtDNA of 26 iPSC clones did not reveal evidence for de novo mutagenesis, or for any selection processes during reprogramming or differentiation. Culture expansion, however, selected against putatively actionable mtDNA mutations. Altogether, our findings point toward a scenario in which intracellular selection of mtDNA variants during culture expansion shapes the mutational landscape of the mitochondrial genome. Our results suggest that intercellular selection and genetic drift exert minor impact and that the bottleneck effect in context of the mtDNA genetic pool might have been overestimated.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , ADN Mitocondrial/genética , Células Madre Pluripotentes Inducidas/fisiología , Mitocondrias/genética , Mutación , Selección Genética , Técnicas de Cultivo de Célula , Genoma Mitocondrial , Inestabilidad Genómica , Humanos
9.
Sci Rep ; 7: 41427, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-28128288

RESUMEN

Activating mutations leading to ligand-independent signaling of the stem cell factor receptor KIT are associated with several hematopoietic malignancies. One of the most common alterations is the D816V mutation. In this study, we characterized mice, which conditionally express the humanized KITD816V receptor in the adult hematopoietic system to determine the pathological consequences of unrestrained KIT signaling during blood cell development. We found that KITD816V mutant animals acquired a myeloproliferative neoplasm similar to polycythemia vera, marked by a massive increase in red blood cells and severe splenomegaly caused by excessive extramedullary erythropoiesis. Moreover, we found mobilization of stem cells from bone marrow to the spleen. Splenectomy prior to KITD816V induction prevented expansion of red blood cells, but rapidly lead to a state of aplastic anemia and bone marrow fibrosis, reminiscent of post polycythemic myeloid metaplasia, the spent phase of polycythemia vera. Our results show that the extramedullary hematopoietic niche microenvironment significantly influences disease outcome in KITD816V mutant mice, turning this model a valuable tool for studying the interplay between functionally abnormal hematopoietic cells and their microenvironment during development of polycythemia vera-like disease and myelofibrosis.


Asunto(s)
Neoplasias de la Médula Ósea/genética , Neoplasias de la Médula Ósea/patología , Transformación Celular Neoplásica/patología , Proteínas Proto-Oncogénicas c-kit/genética , Bazo/patología , Microambiente Tumoral , Animales , Células de la Médula Ósea/patología , Neoplasias de la Médula Ósea/sangre , Proliferación Celular , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Eritrocitos/metabolismo , Eritrocitos/patología , Fibrosis , Factor de Transcripción GATA2/metabolismo , Regulación Neoplásica de la Expresión Génica , Hematopoyesis , Hematopoyesis Extramedular , Células Madre Hematopoyéticas/metabolismo , Ratones Endogámicos C57BL , Fenotipo , Policitemia Vera/genética , Policitemia Vera/patología , Transducción de Señal , Bazo/cirugía , Esplenomegalia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA