Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Ecol Lett ; 27(1): e14347, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38073068

RESUMEN

Seed production and dispersal are crucial ecological processes impacting plant demography, species distributions and community assembly. Plant-animal interactions commonly mediate both seed production and seed dispersal, but current research often examines pollination and seed dispersal separately, which hinders our understanding of how pollination services affect downstream dispersal services. To fill this gap, we propose a conceptual framework exploring how pollen limitation can impact the effectiveness of seed dispersal for endozoochorous and myrmecochorous plant species. We summarize the quantitative and qualitative effects of pollen limitation on plant reproduction and use Optimal Foraging Theory to predict its impact on the foraging behaviour of seed dispersers. In doing so, we offer a new framework that poses numerous hypotheses and empirical tests to investigate links between pollen limitation and seed dispersal effectiveness and, consequently, post-dispersal ecological processes occurring at different levels of biological organization. Finally, considering the importance of pollination and seed dispersal outcomes to plant eco-evolutionary dynamics, we discussed the implications of our framework for future studies exploring the demographic and evolutionary impacts of pollen limitation for animal-dispersed plants.


Asunto(s)
Dispersión de Semillas , Animales , Semillas , Plantas , Polen , Polinización
2.
Proc Biol Sci ; 291(2014): 20231519, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38196350

RESUMEN

Inadequate pollen receipt limits flowering plant reproduction worldwide. Ecological causes of pollen limitation (PL), like pollinator scarcity and low plant abundance, have been a primary research focus. The genetic diversity of plant populations could impact both quantity and quality components of PL in concert with ecological factors, yet empirical examples are lacking. We evaluated joint effects of ecological factors (flower abundance, pollinator visitation) and genetic effective population size (NE) on PL across 13 populations of the common herb Argentina anserina. We used a histological approach with 5504 styles from 1137 flowers to separate quantity and quality components of PL, and link these to reproductive output. NE and pollinator visitation interacted to shape PL, but NE had stronger direct effects. Effectively smaller populations experienced stronger quantity PL, and controlled crosses in a pollinator-free environment revealed that stigmatic pollen quantity was an intrinsic population-level attribute that increased with NE. Pollinator visitation enhanced pollen quality, but only in effectively larger populations. Quantity and quality PL negatively impacted fruit and seed set, respectively. Results highlight that PL is dictated by plant population genetic diversity in addition to commonly evaluated ecological factors. Efforts to support pollinators will more strongly enhance plant reproduction in genetically diverse populations.


Asunto(s)
Polen , Polinización , Densidad de Población , Reproducción , Flores
3.
Heredity (Edinb) ; 130(6): 347-357, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37016137

RESUMEN

Climate change has influenced species distributions worldwide with upward elevational shifts observed in many systems. Leading range edge populations, like those at upper elevation limits, are crucial for climate change responses but can exhibit low genetic diversity due to founder effects, isolation, or limited outbreeding. These factors can hamper local adaptation at range limits. Using the widespread herb, Argentina anserina, we measured ecological attributes (population density on the landscape, area of population occupancy, and plant and flower density) spanning a 1000 m elevation gradient, with high elevation populations at the range limit. We measured vegetative clonal potential in the greenhouse for populations spanning the gradient. We combined these data with a ddRAD-seq dataset to test the hypotheses that high elevation populations would exhibit ecological and genomic signatures of leading range edge populations. We found that population density on the landscape declined towards the high elevation limit, as is expected towards range edges. However, plant density was elevated within edge populations. In the greenhouse, high elevation plants exhibited stronger clonal potential than low elevation plants, likely explaining increased plant density in the field. Phylogeographic analysis supported more recent colonization of high elevation populations which were also more genetically isolated, had more extreme heterozygote excess and had smaller effective population size than low. Results support that colonization of high elevations was likely accompanied by increased asexuality, contributing to a decline in effective population size. Despite high plant density in leading edge populations, their small effective size, isolation and clonality could constrain adaptive potential.


Asunto(s)
Altitud , Plantas , Densidad de Población , Plantas/genética , Adaptación Fisiológica , Aclimatación
4.
Am J Bot ; 110(1): e16101, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36371765

RESUMEN

PREMISE: Floral traits are frequently under pollinator-mediated selection, especially in taxa subject to strong pollen-limitation, such as those reliant on pollinators. However, antagonists can be agents of selection on floral traits as well. The causes of selection acting on spring ephemerals are understudied though these species can experience particularly strong pollen-limitation. I examined pollinator- and antagonist-mediated selection in a narrowly endemic spring ephemeral, Trillium discolor. METHODS: I measured pollen limitation in T. discolor across two years and evaluated its breeding system. I compared selection on floral traits (display height, petal size, petal color, flowering time) between open-pollinated, and pollen-supplemented plants to measure the strength and mode of pollinator-mediated selection. I assessed whether natural levels of antagonism impacted selection on floral traits. RESULTS: Trillium discolor was self-incompatible and experienced pollen limitation in both years of the study. Pollinators exerted negative disruptive selection on display height and petals size. In one year, pollinator-mediated selection favored lighter petals but in the second year pollinators favored darker petals. Antagonist damage did not alter selection on floral traits. CONCLUSIONS: Results demonstrate that pollinators mediate the strength and mode of selection on floral traits in T. discolor. Interannual variation in the strength, mode, and direction of pollinator-mediated selection on floral traits could be important for maintaining of floral diversity in this system. Observed levels of antagonism were weak agents of selection on floral traits.


Asunto(s)
Flores , Polinización , Selección Genética , Fitomejoramiento , Polen
5.
Am J Bot ; 110(2): e16122, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36571452

RESUMEN

PREMISE: Seed production is frequently limited by the receipt of insufficient or low-quality pollen, collectively termed "pollen limitation" (PL). In taxa with gametophytic self-incompatibility (GSI), incompatible pollen can germinate on stigmas but pollen tubes are arrested in styles. This allows for estimates of pollen performance before, during, and after self-recognition, as well as insight into the factors underlying pollen quality limitation in GSI taxa. METHODS: We scored pollen performance following self and outcross pollinations in Argentina anserina to identify the location of self-recognition and establish the relationship between pollen tubes and seed production. We then estimated quantity and quality components of PL from >3300 field-collected styles. We combined our results with other studies to test the prediction that low pollen quality, but not quantity, drives higher PL in self-incompatible (SI) taxa than in self-compatible taxa (SC). RESULTS: Self and outcross pollen germinated readily on stigmas, but 96% of germinated self-pollen was arrested during early tube elongation. Reproduction in the field was more limited by pollen quality than by quantity, and pollen failure near the location of self-recognition was a stronger barrier to fertilization than pollen germination. Across 26 taxa, SI species experienced stronger pollen quality, but not quantity, limitation than SC species. CONCLUSIONS: Evaluating pollen performance at multiple points within pistils can elucidate potential causes of pollen quality limitation. The receipt of incompatible pollen inhibits fertilization success more than insufficient pollen receipt or poor pollen germination in A. anserina. Likewise, pollen quality limitation drives high overall PL in other SI taxa.


Asunto(s)
Polen , Reproducción , Polinización , Tubo Polínico , Semillas
6.
Proc Biol Sci ; 289(1971): 20220070, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35291839

RESUMEN

New species form when they become reproductively isolated. A classic model of speciation posits that derived mutations appear in isolated populations and reduce fitness when combined in hybrids. While these Bateson-Dobzhansky-Muller incompatibilities are known to accumulate as populations diverge over time, they may also reflect the amount of standing genetic variation within populations. We analysed the fitness of F2 hybrids in crosses between 24 populations of a plant species (Campanula americana) with broad variation in standing genetic variation and genetic differentiation driven by post-glacial range expansions. Hybrid breakdown varied substantially and was strongest between populations near the historical cores of the species range where within-population genetic diversity was high. Nearly half of the variation in hybrid breakdown was predicted by the combined effects of standing genetic variation within populations, their pairwise genetic differentiation and differences in the climates they inhabit. Hybrid breakdown was enhanced between populations inhabiting distinct climates, likely reflecting local adaptation. Results support that the mutations causing hybrid breakdown, the raw material for speciation, are more common in long-inhabited areas of the species range. Genetic diversity harboured in refugial areas is thus an important source of incompatibilities critical to the speciation process.


Asunto(s)
Especiación Genética , Hibridación Genética , Adaptación Fisiológica , Flujo Genético , Modelos Genéticos
7.
Proc Biol Sci ; 288(1946): 20202693, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33653138

RESUMEN

Pigmentation affords resistance to abiotic stressors, and thus can respond adaptively or plastically to drought and extreme temperatures associated with global change. Plants frequently display variability in flower coloration that is underlain by anthocyanin pigmentation. While anthocyanin polymorphisms impact plant-animal interactions, they also impact reproductive performance under abiotic stress. We used descriptions of flower colour from over 1900 herbarium records representing 12 North American species spanning 124 years to test whether anthocyanin-based flower colour has responded to global change. Based on demonstrated abiotic associations with performance of anthocyanin colour morphs, we predicted pigmentation would increase in species experiencing increased aridity, but decline in those experiencing larger increases in temperature. We found that the frequency of reports of pigmented morphs increased temporally in some taxa but displayed subtle declines in others. Pigmentation was negatively associated with temperature and positively associated with vapour pressure deficit (a metric of aridity) across taxa. Species experiencing larger temperature increases over time displayed reductions in pigmentation, while those experiencing increases in aridity displayed increases in pigmentation. Change in anthocyanin-based floral colour was thus linked with climatic change. Altered flower coloration has the strong potential to impact plant-animal interactions and overall plant reproductive performance.


Asunto(s)
Antocianinas , Cambio Climático , Animales , Flores , Pigmentación , Polinización , Reproducción
8.
New Phytol ; 232(3): 1436-1448, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34287921

RESUMEN

Sensory Drive predicts that habitat-dependent signal transmission and perception explain the diversification of communication signals. Whether Sensory Drive shapes floral evolution remains untested in nature. Pollinators of Argentina anserina prefer small ultraviolet (UV)-absorbing floral guides at low elevation but larger guides at high. However, mechanisms underlying differential preference are unclear. High elevation populations experience elevated UV irradiance and frequently flower against bare substrates rather than foliage, potentially impacting signal transmission and perception. At high and low elevation extremes, we experimentally tested the effects of UV light (ambient vs reduced) and floral backgrounds (foliage vs bare) on pollinator choice for UV guide size. We examined how different signalling environments shaped pollinator-perceived flower colour using visual system models. At high elevation, pollinators preferred locally common large UV guides under ambient UV, but lacked preference under reduced UV. Flies preferred large guides only against bare substrate, the common high elevation background. Ambient UV amplified contrast of large UV guides with floral backgrounds, and flowers contrasted more with bare ground than foliage. Results support that local signalling conditions contribute to pollinator preference for a floral visual signal, a key tenet of Sensory Drive. Components of Sensory Drive could shape floral signal evolution in other plants spanning heterogeneous signalling environments.


Asunto(s)
Flores , Polinización , Ecosistema , Plantas , Rayos Ultravioleta
9.
New Phytol ; 227(4): 1012-1024, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32112572

RESUMEN

Sensory drive theory posits that the evolution of communication signals is shaped by the sensory systems of receivers and the habitat conditions under which signals are received. It has inspired an enormous body of research, advancing our understanding of signal evolution and speciation in animals. In plants, the extreme diversification of floral signals has fascinated biologists for over a century. While processes involved in sensory drive probably play out in plant-pollinator communication, the theory has not been formally synthesized in this context. However, it has untapped potential to explain mechanisms underlying variation in pollinator preferences across populations, and how environmental conditions impact floral signal transmission and perception. Here I develop a framework of sensory drive for plant-pollinator interactions, identifying similarities and differences from its original conception. I then summarize studies that shed light on how the primary processes of sensory drive - habitat transmission, perceptual tuning, and signal matching - apply to the evolution of floral color and scent. Throughout, I propose research avenues and approaches to assess how sensory drive shapes floral diversity. This framework will be important for explaining patterns of extant floral diversity and examining how altered signaling conditions under global change will impact the evolutionary trajectory of floral traits.


Asunto(s)
Flores , Polinización , Animales , Evolución Biológica , Ecosistema , Odorantes , Plantas
10.
Mol Ecol ; 29(22): 4473-4486, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32978776

RESUMEN

It is often expected that temperate plants have expanded their geographical ranges northward from primarily southern refugia. Evidence for this hypothesis is mixed in eastern North American species, and there is increasing support for colonization from middle latitudes. We studied genome-wide patterns of variation in RADseq loci to test hypotheses concerning range expansion in a North American forest herb (Campanula americana). First, spatial patterns of genetic differentiation were determined. Then phylogenetic relationships and divergence times were estimated. Spatial signatures of genetic drift were also studied to identify the directionality of recent range expansion and its geographical origins. Finally, spatially explicit scenarios for the spread of plants across the landscape were compared, using variation in the population mutation parameter and Tajima's D. We found strong longitudinal subdivision, with populations clustering into groups west and east of the Mississippi River. While the southeastern region was probably part of a diverse Pleistocene refugium, there is little evidence that range expansion involved founders from these southern locales. Instead, declines in genetic diversity and the loss of rare alleles support a westward colonization wave from a middle latitude refugium near the southern Appalachian Mountains, with subsequent expansion from a Pleistocene staging ground in the Mississippi River Valley (0.51-1.27 million years ago). These analyses implicate stepping stone colonization from middle latitudes as an important mechanism of species range expansion in eastern North America. This study further demonstrates the utility of population genetics as a tool to infer the routes travelled by organisms during geographical range expansion.


Asunto(s)
Variación Genética , Ríos , Bosques , Haplotipos , América del Norte , Filogenia
11.
J Evol Biol ; 33(4): 388-400, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32012387

RESUMEN

Colour phenotypes are often involved in communication and are thus under selection by species interactions. However, selection may also act on colour through correlated traits or alternative functions of biochemical pigments. Such forms of selection are instrumental in maintaining petal colour diversity in plants. Pollen colour also varies markedly, but the maintenance of this variation is little understood. In Campanula americana, pollen ranges from white to dark purple, with darker morphs garnering more pollinator visits and exhibiting elevated pollen performance under heat stress. Here, we generate an F2 population segregating for pollen colour and measure correlations with floral traits, pollen attributes and plant-level traits related to fitness. We determine the pigment biochemistry of colour variants and evaluate maternal and paternal fitness of light and dark morphs by crossing within and between morphs. Pollen colour was largely uncorrelated with floral traits (petal colour, size, nectar traits) suggesting it can evolve independently. Darker pollen grains were larger and had higher anthocyanin content (cyanidin and peonidin) which may explain why they outperform light pollen under heat stress. Overall, pollen-related fitness metrics were greater for dark pollen, and dark pollen sires generated seeds with higher germination potential. Conversely, light pollen plants produce 61% more flowers than dark, and 18% more seeds per fruit, suggesting a seed production advantage. Results indicate that light and dark morphs may achieve fitness through different means-dark morphs appear to have a pollen advantage whereas light morphs have an ovule advantage-helping to explain the maintenance of pollen colour variation.


Asunto(s)
Campanulaceae/genética , Aptitud Genética , Pigmentación , Polen , Campanulaceae/metabolismo , Color , Flavonoides/metabolismo , Fenotipo , Reproducción
12.
Ann Bot ; 124(3): 343-353, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31206146

RESUMEN

BACKGROUND: Obtaining an optimal flower temperature can be crucial for plant reproduction because temperature mediates flower growth and development, pollen and ovule viability, and influences pollinator visitation. The thermal ecology of flowers is an exciting, yet understudied field of plant biology. SCOPE: This review focuses on several attributes that modify exogenous heat absorption and retention in flowers. We discuss how flower shape, orientation, heliotropic movements, pubescence, coloration, opening-closing movements and endogenous heating contribute to the thermal balance of flowers. Whenever the data are available, we provide quantitative estimates of how these floral attributes contribute to heating of the flower, and ultimately plant fitness. OUTLOOK: Future research should establish form-function relationships between floral phenotypes and temperature, determine the fitness effects of the floral microclimate, and identify broad ecological correlates with heat capture mechanisms.


Asunto(s)
Flores , Polinización , Ecología , Plantas , Polen , Reproducción
13.
Ann Bot ; 123(6): 951-960, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-30566588

RESUMEN

BACKGROUND AND AIMS: Pollinators often drive the evolution of floral traits, but their capacity to influence the evolution of pollen colour remains unclear. Pollen colour in Campanula americana is variable and displays a longitudinal cline from prevalence of deep purple in western populations to white and light-purple pollen in eastern populations. While selection for thermal tolerance probably underlies darker pollen in the west, factors contributing to the predominance of light pollen in eastern populations and the maintenance of colour variation within populations throughout the range are unknown. Here we examine whether pollinators contribute to the maintenance of pollen colour variation in C. americana. METHODS: In a flight cage experiment, we assessed whether Bombus impatiens foragers can use pollen colour as a reward cue. We then established floral arrays that varied in the frequency of white- and purple-pollen plants in two naturally occurring eastern populations. We observed foraging patterns of wild bees, totalling >1100 individual visits. KEY RESULTS: We successfully trained B. impatiens to prefer one pollen colour morph. In natural populations, the specialist pollinator, Megachile campanulae, displayed a strong and consistent preference for purple-pollen plants regardless of morph frequency. Megachile also exhibited a bias toward pollen-bearing male-phase flowers, and this bias was more pronounced for purple pollen. The other main pollinators, Bombus spp. and small bees, did not display pollen colour preference. CONCLUSIONS: Previous research found that Megachile removes twice as much pollen per visit as other bees and can deplete pollen from natural populations. Taken together, these results suggest that Megachile could reduce the reproductive success of plants with purple pollen, resulting in the prevalence of light-coloured pollen in eastern populations of C. americana. Our research demonstrates that pollinator preferences may play a role in the maintenance of pollen colour variation in natural populations.


Asunto(s)
Campanulaceae , Polinización , Animales , Abejas , Color , Flores , Polen
14.
Am J Bot ; 106(9): 1240-1247, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31415107

RESUMEN

PREMISE: Hermaphroditic plants commonly reproduce through a mixture of selfing and outcrossing. The degree to which outcrossing rates reflect the availability of outcross pollen, genetic differentiation in the ability to autonomously self-fertilize, or both is often unclear. Despite the potential for autonomy and the pollination environment to jointly influence outcrossing, this interaction is rarely studied. METHODS: We reviewed studies from the literature that tested whether the pollination environment or floral traits that cause autonomous selfing predict variation in outcrossing rate among populations. We also measured outcrossing rates in 23 populations of Campanula americana and examined associations with the pollination environment, autonomy, and their interaction. RESULTS: Our review revealed that traits that facilitate selfing were often negatively associated with outcrossing rates whereas most aspects of the pollination environment poorly predicted outcrossing. Populations of C. americana varied from mixed mating to highly outcrossing, but variation was unrelated to population size, density, pollen limitation, or autonomous selfing ability. Outcrossing rate was significantly influenced by an interaction between autonomous selfing ability and pollen limitation. Across highly autonomous populations, elevated pollen limitation was associated with reduced outcrossing, while there was no relationship for less autonomous populations. CONCLUSIONS: Both the ability to self autonomously and pollen limitation interact to shape outcrossing rates in C. americana. This work suggests that autonomy affords mating-system flexibility, though it is not ubiquitous in all populations across the species range. Interactions between traits influencing autonomy and pollen limitation are likely to explain variation in outcrossing rates among populations of flowering plants.


Asunto(s)
Campanulaceae , Flores , Polen , Polinización , Reproducción
15.
Proc Biol Sci ; 285(1880)2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29875304

RESUMEN

Seemingly mutualistic relationships can be exploited, in some cases reducing fitness of the exploited species. In plants, the insufficient receipt of pollen limits reproduction. While infrequent pollination commonly underlies pollen limitation (PL), frequent interactions with low-efficiency, exploitative pollinators may also cause PL. In the widespread protandrous herb Campanula americana, visitation by three pollinators explained 63% of the variation in PL among populations spanning the range. Bumblebees and the medium-sized Megachile campanulae enhanced reproductive success, but small solitary bees exacerbated PL. To dissect mechanisms behind these relationships, we scored sex-specific floral visitation, and the contributions of each pollinator to plant fitness using single flower visits. Small bees and M. campanulae overvisited male-phase flowers, but bumblebees frequently visited female-phase flowers. Fewer bumblebee visits were required to saturate seed set compared to other bees. Scaling pollinator efficiency metrics to populations, small bees deplete large amounts of pollen due to highly male-biased flower visitation and infrequent pollen deposition. Thus, small bees reduce plant reproduction by limiting pollen available for transfer by efficient pollinators, and appear to exploit the plant-pollinator mutualism, acting as functional parasites to C. americana It is therefore unlikely that small bees will compensate for reproductive failure in C. americana when bumblebees are scarce.


Asunto(s)
Abejas/fisiología , Campanulaceae/fisiología , Polen , Polinización , Simbiosis , Animales , Tamaño Corporal , Flores/fisiología , Especificidad de la Especie
16.
New Phytol ; 218(1): 370-379, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29297201

RESUMEN

The evolution of flower color, especially petal pigmentation, has received substantial attention. Less understood is the evolutionary ecology of pollen pigmentation, though it varies among and within species and its biochemical properties affect pollen viability. We characterize the distribution of pollen color across 24 populations of the North American herb Campanula americana, and assess the degree to which this variation is genetically based. We identify abiotic factors that covary with pollen color and test whether germination of light and dark pollen is differentially affected by variable temperature and UV. Pollen color varies from white to deep purple in C. americana and is genetically determined. There was a longitudinal cline whereby pollen was darkest in western populations. Accounting for latitudinal variation, western populations experience elevated temperature and UV irradiance. Germination of light-colored pollen was reduced by 60% under high temperature, but dark pollen was unaffected. Exposure to UV reduced germination of light and dark pollen similarly. The cline in pollen color across the range may reflect adaptation to heat stress. This study supports thermal tolerance as a novel function of pollen pigmentation and contributes to growing evidence that abiotic factors can drive floral diversity.


Asunto(s)
Campanulaceae/fisiología , Geografía , Pigmentación/fisiología , Polen/fisiología , Estrés Fisiológico , Temperatura , Campanulaceae/efectos de la radiación , Germinación/efectos de la radiación , Pigmentación/efectos de la radiación , Polen/efectos de la radiación , Estrés Fisiológico/efectos de la radiación , Rayos Ultravioleta
17.
Am J Bot ; 105(4): 700-710, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29608209

RESUMEN

PREMISE OF THE STUDY: Polyploids are predicted to have greater niche breadth and larger ranges than diploids because of higher ecological tolerances, self-compatibility, and increased genetic variation. However, empirical support for this prediction is mixed, and most studies compare diploids and polyploids, rather than accounting for quantitative variation in ploidy. We test the prediction that species of higher ploidy have greater range breadth and abiotic breadth than those of lower ploidy. METHODS: We estimate range breadth (latitudinal range, altitudinal range, and range size) and abiotic breadth (range in temperature, precipitation, and ultraviolet-B irradiance) for 109 species in the Potentilleae tribe of Rosaceae. We assess the contribution of ploidy to variation in range breadth, while accounting for shared evolutionary history and time of species divergence using phylogenetic comparative methods. KEY RESULTS: Ploidy varied widely among species from 2× to 12×. Phylogenetic relatedness explained little of the variation in ploidy, range breadth, and abiotic breadth. Transitions to higher ploidy were associated with reduced latitudinal and altitudinal ranges, smaller overall range size, and reduced abiotic breadth for temperature and UV-B. CONCLUSIONS: In contrast to predictions, this study shows that transitions to higher ploidy are associated with reduced range size and abiotic breadth. It also highlights the importance of considering continuous variation in ploidy when evaluating ecological correlates with ploidy. We discuss how genome duplication may contribute to the observed negative relationship between ploidy and range breadth.


Asunto(s)
Poliploidía , Potentilla/genética , Altitud , Clima , Demografía , Diploidia , Filogenia , Ploidias
18.
Am J Bot ; 105(2): 241-248, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29578289

RESUMEN

PREMISE OF THE STUDY: The evolution of multiple floral traits often underlies the transition from outcrossing to selfing. Such traits can influence the ability to self, and the timing at which selfing occurs, which in turn affects the costs of selfing. Species that display variation in autonomous selfing provide an opportunity to dissect the phenotypic changes that contribute to variability in the mating system. METHODS: In a common garden, we measured dichogamy and herkogamy in 24 populations of the protandrous mixed-mating herb Campanula americana, and related these to autonomous fruit set (autonomy). We then measured the timing of self-pollen deposition and fruit production in populations with high and low autonomy, and determined whether pollen germinability across floral development contributes to variation in autonomy. KEY RESULTS: Populations that transitioned more rapidly to female phase displayed elevated autonomous selfing, but herkogamy was unassociated with autonomous selfing. Selfing occurred more rapidly in highly autonomous populations because of greater self-pollen deposition early in female phase. Pollen germinability in low-autonomy populations remained constant across floral development, but in high-autonomy populations it increased after floral anthesis and was highest near the onset of female phase. CONCLUSIONS: Reduced dichogamy, elevated self-pollen deposition, and higher pollen germination late in male phase contribute to both earlier selfing and greater selfing. These traits vary among populations, likely reflecting past selection on the mating system. While delayed selfing bears fewer fitness costs, the evolution of earlier selfing may be favored if self-pollen availability decreases over floral development.


Asunto(s)
Campanulaceae/fisiología , Organismos Hermafroditas/fisiología , Polen/genética , Autofecundación , Campanulaceae/anatomía & histología , Flores/anatomía & histología , Flores/fisiología , Polinización , Factores de Tiempo
19.
Ecology ; 98(11): 2930-2939, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28869778

RESUMEN

The reproductive assurance (RA) hypothesis predicts that the ability to autonomously self-fertilize should be favored in environments where a lack of mates or pollinators limits outcross reproduction. Because such limits to outcrossing are predicted to be most severe at range edges, elevated autonomy in peripheral populations is often attributed to RA. We test this hypothesis in 24 populations spanning the range of Campanula americana, including sampling at the range interior and three geographic range edges. We scored autonomous fruit set in a pollinator-free environment and detected clinal variation-autonomy increased linearly from the southern to the northern edge, and from the eastern to the western edge. We then address whether the cline reflects the contemporary pollination environment. We measured population size, plant density, pollinator visitation, outcross pollen limitation and RA in natural populations over two years. Most populations were pollen limited, and those that experienced higher visitation rates by bumblebees had reduced pollen limitation. Reproductive assurance, however, was generally low across populations and was unrelated to pollen limitation or autonomy. Neither pollen limitation nor RA displayed geographic clines. Finally, autonomy was not associated with pollinator visitation rates or mate availability. Thus, the data do not support the RA hypothesis; clinal variation in autonomy is unrelated to the current pollination environment. Therefore, geographic patterns of autonomy are likely the result of historical processes rather than contemporary natural selection for RA.


Asunto(s)
Ecosistema , Polinización , Ambiente , Flores , Polen , Densidad de Población , Reproducción , Selección Genética
20.
New Phytol ; 211(2): 708-18, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26987355

RESUMEN

Selection driven by biotic interactions can generate variation in floral traits. Abiotic selection, however, also contributes to floral diversity, especially with respect to patterns of pigmentation. Combining comparative studies of floral pigmentation and geography can reveal the bioclimatic factors that may drive macroevolutionary patterns of floral color. We create a molecular phylogeny and measure ultraviolet (UV) floral pattern for 177 species in the Potentilleae tribe (Rosaceae). Species are similar in flower shape and visible color but vary in UV floral pattern. We use comparative approaches to determine whether UV pigmentation variation is associated with geography and/or bioclimatic features (UV-B, precipitation, temperature). Floral UV pattern was present in half of the species, while others were uniformly UV-absorbing. Phylogenetic signal was detected for presence/absence of pattern, but among patterned species, quantitative variation in UV-absorbing area was evolutionarily labile. Uniformly UV-absorbing species tended to experience higher UV-B irradiance. Patterned species occurring at higher altitudes had larger UV-absorbing petal areas, corresponding with low temperature and high UV exposure. This analysis expands our understanding of the covariation of UV-B irradiance and UV floral pigmentation from within species to that among species, and supports the view that abiotic selection is associated with floral diversification among species.


Asunto(s)
Evolución Biológica , Clima , Flores/fisiología , Geografía , Pigmentación , Rayos Ultravioleta , Imagenología Tridimensional , Fenotipo , Filogenia , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA