Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glia ; 72(9): 1590-1603, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38856187

RESUMEN

The creatine-phosphocreatine cycle serves as a crucial temporary energy buffering system in the brain, regulated by brain creatine kinase (CKB), in maintaining Adenosine triphosphate (ATP) levels. Alzheimer's disease (AD) has been linked to increased CKB oxidation and loss of its regulatory function, although specific pathological processes and affected cell types remain unclear. In our study, cerebral cortex samples from individuals with AD, dementia with Lewy bodies (DLB), and age-matched controls were analyzed using antibody-based methods to quantify CKB levels and assess alterations associated with disease processes. Two independently validated antibodies exclusively labeled astrocytes in the human cerebral cortex. Combining immunofluorescence (IF) and mass spectrometry (MS), we explored CKB availability in AD and DLB cases. IF and Western blot analysis demonstrated a loss of CKB immunoreactivity correlated with increased plaque load, severity of tau pathology, and Lewy body pathology. However, transcriptomics data and targeted MS demonstrated unaltered total CKB levels, suggesting posttranslational modifications (PTMs) affecting antibody binding. This aligns with altered efficiency at proteolytic cleavage sites indicated in the targeted MS experiment. These findings highlight that the proper function of astrocytes, understudied in the brain compared with neurons, is highly affected by PTMs. Reduction in ATP levels within astrocytes can disrupt ATP-dependent processes, such as the glutamate-glutamine cycle. As CKB and the creatine-phosphocreatine cycle are important in securing constant ATP availability, PTMs in CKB, and astrocyte dysfunction may disturb homeostasis, driving excitotoxicity in the AD brain. CKB and its activity could be promising biomarkers for monitoring early-stage energy deficits in AD.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Astrocitos/metabolismo , Astrocitos/patología , Anciano , Masculino , Femenino , Anciano de 80 o más Años , Forma BB de la Creatina-Quinasa/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Creatina Quinasa/metabolismo , Proteínas tau/metabolismo
2.
Anal Chem ; 95(36): 13649-13658, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37639361

RESUMEN

Mass spectrometry-based bottom-up proteomics is rapidly evolving and routinely applied in large-scale biomedical studies. Proteases are a central component of every bottom-up proteomics experiment, digesting proteins into peptides. Trypsin has been the most widely applied protease in proteomics due to its characteristics. With ever-larger cohort sizes and possible future clinical application of mass spectrometry-based proteomics, the technical impact of trypsin becomes increasingly relevant. To assess possible biases introduced by trypsin digestion, we evaluated the impact of eight commercially available trypsins in a variety of bottom-up proteomics experiments and across a range of protease concentrations and storage times. To investigate the universal impact of these technical attributes, we included bulk HeLa cell lysate, human plasma, and single HEK293 cells, which were analyzed over a range of selected reaction monitoring (SRM), data-independent acquisition (DIA), and data-dependent acquisition (DDA) instrument methods on three LC-MS instruments. The quantification methods employed encompassed both label-free approaches and absolute quantification utilizing spike-in heavy-labeled recombinant protein fragment standards. Based on this extensive data set, we report variations between commercial trypsins, their source, and their concentration. Furthermore, we provide suggestions on the handling of trypsin in large-scale studies.


Asunto(s)
Péptido Hidrolasas , Proteómica , Humanos , Tripsina , Células HEK293 , Células HeLa
3.
J Proteome Res ; 21(10): 2526-2534, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36044728

RESUMEN

Protein quantification strategies using multiple proteases have been shown to deliver poor interprotease accuracy in label-free mass spectrometry experiments. By utilizing six different proteases with different cleavage sites, this study explores the protease bias and its effect on accuracy and precision by using recombinant protein standards. We established 557 SRM assays, using a recombinant protein standard resource, toward 10 proteins in human plasma and determined their concentration with multiple proteases. The quantified peptides of these plasma proteins spanned 3 orders of magnitude (0.02-70 µM). In total, 60 peptides were used for absolute quantification and the majority of the peptides showed high robustness. The retained reproducibility was achieved by quantifying plasma proteins using spiked stable isotope standard recombinant proteins in a targeted proteomics workflow.


Asunto(s)
Péptido Hidrolasas , Proteómica , Proteínas Sanguíneas/análisis , Endopeptidasas , Humanos , Marcaje Isotópico/métodos , Isótopos , Péptidos/análisis , Proteómica/métodos , Proteínas Recombinantes , Reproducibilidad de los Resultados
4.
Metab Eng ; 72: 171-187, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35301123

RESUMEN

Biologics represent the fastest growing group of therapeutics, but many advanced recombinant protein moieties remain difficult to produce. Here, we identify metabolic engineering targets limiting expression of recombinant human proteins through a systems biology analysis of the transcriptomes of CHO and HEK293 during recombinant expression. In an expression comparison of 24 difficult to express proteins, one third of the challenging human proteins displayed improved secretion upon host cell swapping from CHO to HEK293. Guided by a comprehensive transcriptomics comparison between cell lines, especially highlighting differences in secretory pathway utilization, a co-expression screening of 21 secretory pathway components validated ATF4, SRP9, JUN, PDIA3 and HSPA8 as productivity boosters in CHO. Moreover, more heavily glycosylated products benefitted more from the elevated activities of the N- and O-glycosyltransferases found in HEK293. Collectively, our results demonstrate the utilization of HEK293 for expression rescue of human proteins and suggest a methodology for identification of secretory pathway components for metabolic engineering of HEK293 and CHO.


Asunto(s)
Vías Secretoras , Animales , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Proteínas Recombinantes , Vías Secretoras/genética
5.
J Proteome Res ; 19(12): 4815-4825, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32820635

RESUMEN

Spike-in of standards of known concentrations used in proteomics-based workflows is an attractive approach for both accurate and precise multiplexed protein quantification. Here, a quantitative method based on targeted proteomics analysis of plasma proteins using isotope-labeled recombinant standards originating from the Human Protein Atlas project has been established. The standards were individually quantified prior to being employed in the final multiplex assay. The assays are mainly directed toward actively secreted proteins produced in the liver, but may also originate from other parts of the human body. This study included 21 proteins classified by the FDA as either drug targets or approved clinical protein biomarkers. We describe the use of this multiplex assay for profiling a well-defined human cohort with sample collection spanning over a one-year period. Samples were collected at four different time points, which allowed for a longitudinal analysis to assess the variable plasma proteome within individuals. Two assays toward APOA1 and APOB had available clinical data, and the two assays were benchmarked against each other. The clinical assay is based on antibodies and shows high correlation between the two orthogonal methods, suggesting that targeted proteomics with highly parallel, multiplex analysis is an attractive alternative to antibody-based protein assays.


Asunto(s)
Proteoma , Proteómica , Proteínas Sanguíneas , Humanos , Marcaje Isotópico , Proteínas Recombinantes/genética
6.
J Proteome Res ; 18(7): 2706-2718, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31094526

RESUMEN

The availability of proteomics resources hosting protein and peptide standards, as well as the data describing their analytical performances, will continue to enhance our current capabilities to develop targeted proteomics methods for quantitative biology. This study describes the analysis of a resource of 26,840 individually purified recombinant protein fragments corresponding to more than 16,000 human protein-coding genes. The resource was screened to identify proteotypic peptides suitable for targeted proteomics efforts, and we report LC-MS/MS assay coordinates for more than 25,000 proteotypic peptides, corresponding to more than 10,000 unique proteins. Additionally, peptide formation and digestion kinetics were, for a subset of the standards, monitored using a time-course protocol involving parallel digestion of isotope-labeled recombinant protein standards and endogenous human plasma proteins. We show that the strategy by adding isotope-labeled recombinant proteins before trypsin digestion enables short digestion protocols (≤60 min) with robust quantitative precision. In a proof-of-concept study, we quantified 23 proteins in human plasma using assay parameters defined in our study and used the standards to describe distinct clusters of individuals linked to different levels of LPA, APOE, SERPINA5, and TFRC. In summary, we describe the use and utility of a resource of recombinant proteins to identify proteotypic peptides useful for targeted proteomics assay development.


Asunto(s)
Fragmentos de Péptidos/análisis , Proteómica/métodos , Proteínas Recombinantes/análisis , Proteínas Sanguíneas/análisis , Cromatografía Liquida/métodos , Humanos , Marcaje Isotópico/métodos , Espectrometría de Masas en Tándem/métodos , Tripsina/metabolismo
7.
Cancers (Basel) ; 15(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37835457

RESUMEN

Mass spectrometry based on data-independent acquisition (DIA) has developed into a powerful quantitative tool with a variety of implications, including precision medicine. Combined with stable isotope recombinant protein standards, this strategy provides confident protein identification and precise quantification on an absolute scale. Here, we describe a comprehensive targeted proteomics approach to profile a pan-cancer cohort consisting of 1800 blood plasma samples representing 15 different cancer types. We successfully performed an absolute quantification of 253 proteins in multiplex. The assay had low intra-assay variability with a coefficient of variation below 20% (CV = 17.2%) for a total of 1013 peptides quantified across almost two thousand injections. This study identified a potential biomarker panel of seven protein targets for the diagnosis of multiple myeloma patients using differential expression analysis and machine learning. The combination of markers, including the complement C1 complex, JCHAIN, and CD5L, resulted in a prediction model with an AUC of 0.96 for the identification of multiple myeloma patients across various cancer patients. All these proteins are known to interact with immunoglobulins.

8.
PLoS One ; 18(2): e0281772, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36791076

RESUMEN

Lipoprotein(a), also known as Lp(a), is an LDL-like particle composed of apolipoprotein(a) (apo(a)) bound covalently to apolipoprotein B100. Plasma concentrations of Lp(a) are highly heritable and vary widely between individuals. Elevated plasma concentration of Lp(a) is considered as an independent, causal risk factor of cardiovascular disease (CVD). Targeted mass spectrometry (LC-SRM/MS) combined with stable isotope-labeled recombinant proteins provides robust and precise quantification of proteins in the blood, making LC-SRM/MS assays appealing for monitoring plasma proteins for clinical implications. This study presents a novel quantitative approach, based on proteotypic peptides, to determine the absolute concentration of apo(a) from two microliters of plasma and qualified according to guideline requirements for targeted proteomics assays. After optimization, assay parameters such as linearity, lower limits of quantification (LLOQ), intra-assay variability (CV: 4.7%) and inter-assay repeatability (CV: 7.8%) were determined and the LC-SRM/MS results were benchmarked against a commercially available immunoassay. In summary, the measurements of an apo(a) single copy specific peptide and a kringle 4 specific peptide allow for the determination of molar concentration and relative size of apo(a) in individuals.


Asunto(s)
Apolipoproteínas A , Proteómica , Humanos , Apoproteína(a) , Péptidos/química , Lipoproteína(a)
9.
Commun Biol ; 6(1): 947, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723200

RESUMEN

Metabolite-level regulation of enzyme activity is important for microbes to cope with environmental shifts. Knowledge of such regulations can also guide strain engineering for biotechnology. Here we apply limited proteolysis-small molecule mapping (LiP-SMap) to identify and compare metabolite-protein interactions in the proteomes of two cyanobacteria and two lithoautotrophic bacteria that fix CO2 using the Calvin cycle. Clustering analysis of the hundreds of detected interactions shows that some metabolites interact in a species-specific manner. We estimate that approximately 35% of interacting metabolites affect enzyme activity in vitro, and the effect is often minor. Using LiP-SMap data as a guide, we find that the Calvin cycle intermediate glyceraldehyde-3-phosphate enhances activity of fructose-1,6/sedoheptulose-1,7-bisphosphatase (F/SBPase) from Synechocystis sp. PCC 6803 and Cupriavidus necator in reducing conditions, suggesting a convergent feed-forward activation of the cycle. In oxidizing conditions, glyceraldehyde-3-phosphate inhibits Synechocystis F/SBPase by promoting enzyme aggregation. In contrast, the glycolytic intermediate glucose-6-phosphate activates F/SBPase from Cupriavidus necator but not F/SBPase from Synechocystis. Thus, metabolite-level regulation of the Calvin cycle is more prevalent than previously appreciated.


Asunto(s)
Bacterias , Gliceraldehído , Biotecnología , Análisis por Conglomerados , Gliceraldehído 3-Fosfato , Fosfatos
10.
Nat Commun ; 14(1): 3280, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286573

RESUMEN

Venous thromboembolism (VTE) is a common, multi-causal disease with potentially serious short- and long-term complications. In clinical practice, there is a need for improved plasma biomarker-based tools for VTE diagnosis and risk prediction. Here we show, using proteomics profiling to screen plasma from patients with suspected acute VTE, and several case-control studies for VTE, how Complement Factor H Related 5 protein (CFHR5), a regulator of the alternative pathway of complement activation, is a VTE-associated plasma biomarker. In plasma, higher CFHR5 levels are associated with increased thrombin generation potential and recombinant CFHR5 enhanced platelet activation in vitro. GWAS analysis of ~52,000 participants identifies six loci associated with CFHR5 plasma levels, but Mendelian randomization do not demonstrate causality between CFHR5 and VTE. Our results indicate an important role for the regulation of the alternative pathway of complement activation in VTE and that CFHR5 represents a potential diagnostic and/or risk predictive plasma biomarker.


Asunto(s)
Tromboembolia Venosa , Humanos , Biomarcadores , Activación de Complemento , Factor H de Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Factor V , Tromboembolia Venosa/genética
11.
Biotechniques ; 71(3): 473-483, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34431357

RESUMEN

Targeted proteomics is an attractive approach for the analysis of blood proteins. Here, we describe a novel analytical platform based on isotope-labeled recombinant protein standards stored in a chaotropic agent and subsequently dried down to allow storage at ambient temperature. This enables a straightforward protocol suitable for robotic workstations. Plasma samples to be analyzed are simply added to the dried pellet followed by enzymatic treatment and mass spectrometry analysis. Here, we show that this approach can be used to precisely (coefficient of variation <10%) determine the absolute concentrations in human plasma of hundred clinically relevant protein targets, spanning four orders of magnitude, using simultaneous analysis of 292 peptides. The use of this next-generation analytical platform for high-throughput clinical proteome profiling is discussed.


Asunto(s)
Proteínas Sanguíneas , Proteómica , Proteínas Sanguíneas/genética , Humanos , Marcaje Isotópico , Proteoma , Proteínas Recombinantes/genética , Flujo de Trabajo
12.
Cancer Res ; 81(9): 2545-2555, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33574091

RESUMEN

Malignant cutaneous melanoma is one of the most common cancers in young adults. During the last decade, targeted and immunotherapies have significantly increased the overall survival of patients with malignant cutaneous melanoma. Nevertheless, disease progression is common, and a lack of predictive biomarkers of patient response to therapy hinders individualized treatment strategies. To address this issue, we performed a longitudinal study using an unbiased proteomics approach to identify and quantify proteins in plasma both before and during treatment from 109 patients treated with either targeted or immunotherapy. Linear modeling and machine learning approaches identified 43 potential prognostic and predictive biomarkers. A reverse correlation between apolipoproteins and proteins related to inflammation was observed. In the immunotherapy group, patients with low pretreatment expression of apolipoproteins and high expression of inflammation markers had shorter progression-free survival. Similarly, increased expression of LDHB during treatment elicited a significant impact on response to immunotherapy. Overall, we identified potential common and treatment-specific biomarkers in malignant cutaneous melanoma, paving the way for clinical use of these biomarkers following validation on a larger cohort. SIGNIFICANCE: This study identifies a potential biomarker panel that could improve the selection of therapy for patients with cutaneous melanoma.


Asunto(s)
Apolipoproteínas/sangre , Proteína C-Reactiva/análisis , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Melanoma/sangre , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteoma/análisis , Proteína Amiloide A Sérica/análisis , Neoplasias Cutáneas/sangre , Neoplasias Cutáneas/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Pronóstico , Supervivencia sin Progresión , Inhibidores de Proteínas Quinasas/farmacología , Proteómica/métodos , Adulto Joven , Melanoma Cutáneo Maligno
13.
Cancers (Basel) ; 13(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33478099

RESUMEN

Pyruvate kinase muscle type (PKM) is a key enzyme in glycolysis and plays an important oncological role in cancer. However, the association of PKM expression and the survival outcome of patients with different cancers is controversial. We employed systems biology methods to reveal prognostic value and potential biological functions of PKM transcripts in different human cancers. Protein products of transcripts were shown and detected by western blot and mass spectrometry analysis. We focused on different transcripts of PKM and investigated the associations between their mRNA expression and the clinical survival of the patients in 25 different cancers. We find that the transcripts encoding PKM2 and three previously unstudied transcripts, namely ENST00000389093, ENST00000568883, and ENST00000561609, exhibited opposite prognostic indications in different cancers. Moreover, we validated the prognostic effect of these transcripts in an independent kidney cancer cohort. Finally, we revealed that ENST00000389093 and ENST00000568883 possess pyruvate kinase enzymatic activity and may have functional roles in metabolism, cell invasion, and hypoxia response in cancer cells. Our study provided a potential explanation to the controversial prognostic indication of PKM, and could invoke future studies focusing on revealing the biological and oncological roles of these alternative spliced variants of PKM.

14.
Life Sci Alliance ; 3(10)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32737166

RESUMEN

Despite recognizing aging as a common risk factor of many human diseases, little is known about its molecular traits. To identify age-associated proteins circulating in human blood, we screened 156 individuals aged 50-92 using exploratory and multiplexed affinity proteomics assays. Profiling eight additional study sets (N = 3,987), performing antibody validation, and conducting a meta-analysis revealed a consistent age association (P = 6.61 × 10-6) for circulating histidine-rich glycoprotein (HRG). Sequence variants of HRG influenced how the protein was recognized in the immunoassays. Indeed, only the HRG profiles affected by rs9898 were associated with age and predicted the risk of mortality (HR = 1.25 per SD; 95% CI = 1.12-1.39; P = 6.45 × 10-5) during a follow-up period of 8.5 yr after blood sampling (IQR = 7.7-9.3 yr). Our affinity proteomics analysis found associations between the particular molecular traits of circulating HRG with age and all-cause mortality. The distinct profiles of this multipurpose protein could serve as an accessible and informative indicator of the physiological processes related to biological aging.


Asunto(s)
Envejecimiento/fisiología , Proteínas/análisis , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Femenino , Estudios de Seguimiento , Humanos , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Unión Proteica , Proteínas/genética , Proteínas/metabolismo , Proteómica/métodos
15.
Clin Chim Acta ; 494: 79-93, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30858094

RESUMEN

Detailed knowledge of protein changes in cerebrospinal fluid (CSF) across healthy and diseased individuals would provide a better understanding of the onset and progression of neurodegenerative disorders. In this study, we selected 20 brain-enriched proteins previously identified in CSF by antibody suspension bead arrays (SBA) to be potentially biomarkers for Alzheimer's disease (AD) and verified these using an orthogonal approach. We examined the same set of 94 CSF samples from patients affected by AD (including preclinical and prodromal), mild cognitive impairment (MCI), non-AD dementia and healthy individuals, which had previously been analyzed by SBA. Twenty-eight parallel reaction monitoring (PRM) assays were developed and 13 of them could be validated for protein quantification. Antibody profiles were verified by PRM. For seven proteins, the antibody profiles were highly correlated with the PRM results (r > 0.7) and GAP43, VCAM1 and PSAP were identified as potential markers of preclinical AD. In conclusion, we demonstrate the usefulness of targeted mass spectrometry as a tool for the orthogonal verification of antibody profiling data, suggesting that these complementary methods can be successfully applied for comprehensive exploration of CSF protein levels in neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Proteínas del Líquido Cefalorraquídeo/análisis , Análisis por Matrices de Proteínas , Enfermedad de Alzheimer/inmunología , Anticuerpos/inmunología , Especificidad de Anticuerpos , Biomarcadores/análisis , Proteínas del Líquido Cefalorraquídeo/inmunología , Estudios de Cohortes , Humanos , Espectrometría de Masas
16.
Sci Signal ; 12(609)2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772123

RESUMEN

The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immunoassays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood.


Asunto(s)
Bases de Datos de Proteínas , Proteoma/metabolismo , Proteómica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA