Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Acoust Soc Am ; 152(4): 2446, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36319251

RESUMEN

This paper studies the simplest system that can possess left-right symmetrical and asymmetrical surroundings, three bubbles in a line. Assuming that the deformations are small, the surfaces of bubbles are described by a combination of the first three Legendre polynomials, that is, spherical symmetrical mode P0, L-R antisymmetrical mode P1, and symmetrical mode P2. A dynamical model is built to describe aspherical oscillations of central and two side bubbles. It is found that when three identical bubbles are separated uniformly, the central bubble only has a P2 component and P1 component tends to zero, while two side bubbles have both P1 and P2 components. When three identical bubbles are separated by different distances, they can be degenerated into a two-bubble system and a free bubble. The bubble deformations contain both P1 and P2 components in the two-bubble system, while both aspherical components P1 and P2 of the free bubble tend to zero. If side bubbles are different in ambient radii but located symmetrically on the left and right of the central bubble, the side bubble pulsated more strongly plays an important role on the deformation of the central one.

2.
Ultrason Sonochem ; 94: 106352, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36893682

RESUMEN

The interaction between spherical cavitation bubble and flat wall is transformed into that between the real bubble and imaging bubble by the method of images. Firstly, we investigate the dynamics of real bubble and matched, inversed or mis-matched imaging bubble driven by a small amplitude ultrasound, revealing the characteristics of the interaction between cavitation bubble and rigid, soft and impedance walls. Then, we emphatically study the dynamics of real bubble and mis-matched imaging bubble driven by a finite amplitude ultrasound, and the interaction characteristics between cavitation bubble and real impedance wall are revealed. The results show that the cavitation bubble is always close to the rigid wall and far away from the soft wall; For the impedance wall, whether the cavitation bubble is far away or close depends on the specific wall parameters. Moreover, the direction and magnitude of bubble's translation velocity can be changed by adjusting the driving parameters. Understanding the interaction between cavitation bubble and impedance wall is of great significance for efficient application of ultrasonic cavitation.

3.
Ultrason Sonochem ; 100: 106583, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37708743

RESUMEN

In a plane acoustic field, a model involving the radial and translational motions of bubble is derived, which is used to numerically investigate the translation of two interacting spherical cavitation bubbles. For the smaller initial distance between bubble centers, we investigate the dynamics of two bubbles, and find that they could come into contact but the velocities of closing to each other are different when the equilibrium radius is different. The results show that when the wavelength of plane acoustic field is much larger than the initial distance, the bubbles are approximately pulsating in phase. Moreover, the velocity of contact process of two bubbles can be changed by adjusting the parameters of plane acoustic field. For increasing in the initial distance, the bubbles would present two translation motions: close to each other for the pulsating in phase and away from each other for the pulsating out of phase, which could be verified by calculating the secondary Bjerknes force. Meanwhile, the larger the initial distance, the smaller the secondary Bjerknes force value is. Understanding the translation of bubble is of great significance for helpful explaining formation of streamer structures in ultrasonic cavitation.

4.
Ultrason Sonochem ; 82: 105865, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34922152

RESUMEN

A model of cavitation bubbles is derived in liquid confined in an elastic sealed vessel driven by ultrasound. In this model, an assumption that the pressure acting on the sealed vessel due to bubble pulsations is proportional to total volume change of bubbles is made. Numerical simulations are carried out for a single bubble and for bubbles. The results show that the pulsation of a single bubble can be suppressed to a large extent in sealed vessel, and that of two matched bubbles with same ambient radius can be further suppressed. However, when two mismatched bubbles have the same ambient radii, an interesting breathing phenomenon takes place, where one bubble pulsates inversely with the other one. Due to this breathing phenomenon the suppression effect becomes weak, so the maximum radii of two mismatched bubbles can be larger than that of a single bubble or that of two matched bubbles in sealed vessel. Besides that, for two mismatched bubbles with different ambient radii, the small one in sealed vessel under some certain parameters can pulsate as strong as or even stronger than that of a single bubble in an open vessel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA