Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Infect Drug Resist ; 14: 4261-4269, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34703252

RESUMEN

PURPOSE: Drug resistance against antimicrobials is on the rise at alarmingly high rates. Acinetobacter baumannii is one of the six ESKAPE pathogens which are a significant "one health" issue. Clinical isolates of A. baumannii exhibit MDR phenotype mostly and infrequently the XDR and PDR phenotype. As a result, these infections have one of the highest mortality rates in hospitals. Alternative therapies are urgently needed. METHODS: Various phages were enriched against XDR clinical strain of A. baumannii. A potent phage, QAB 3.4, was further tested against 100 clinical strains. Because of its broad lytic activity, it was further tested for stability, resistance development and as an infection control agent. RESULTS: Phage QAB 3.4 showed broad lytic activity against 100 MDR and XDR clinical isolates representing a wide diversity of infection sites. Assays conducted to document the phage's stability, and ability of clinical isolates to develop resistance against it, showed promising outcomes for its potential use in clinical applications. Phage QAB 3.4 was able to eradicate A. baumannii from pre-inoculated solid surfaces. It provides a proof of concept that phages can be used as environmentally friendly infection control agents. CONCLUSION: We propose the phage QAB 3.4 is a promising candidate for further pre-clinical and clinical studies to test its biosafety and efficacy.

2.
Infect Drug Resist ; 14: 4511-4516, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744442

RESUMEN

BACKGROUND: The drastic increase in use of antibiotics as a mandatory part of production in poultry and livestock has led to the development of bacterial resistance against antibiotics. The spread of resistant bacteria from poultry to humans increases the risk of treatment failure by antibiotics because of resistance genes transfer. STUDY OBJECTIVE: The objective of the study was to estimate and compare the P. aeruginosa resistance profile collected from areas around the poultry farm premises and areas at least 500 meters away from the nearest poultry farm. We studied the effect of antibiotic usage in farms on the bacterial profile present in the upper layer of soil. METHODOLOGY: A total of 1,200 moist soil samples were collected from areas within a 25 meters range of poultry farms and areas that had no poultry farms in its 500 meters vicinity. P. aeruginosa was cultured and isolated. The antibiotic susceptibility profile was carried out by Kirby-Bauer disc diffusion method and results were analyzed according to CLSI guidelines. Statistical analysis was carried out to check the significance of results. RESULTS: A total of 300 P. aeruginosa isolates were isolated, among which 140 isolates were isolated from areas around the poultry farm premises and had higher prevalence of antibiotic resistance. A total of 160 isolates were isolated from areas outside the poultry farm range. Resistance was not as high as in the isolates from around the farm. The ESBL production was higher in the isolates that were in close contact with the poultry farm as compared to the isolates away from the farm. CONCLUSION: Use of antibiotics in the poultry farm for production significantly increases the resistance in bacterial strains present in the upper layer of soil around the poultry farm within at least a 25 meter range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA