Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Evol Dev ; 24(5): 127-130, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35971632

RESUMEN

There is widespread recognition of the need to increase research opportunities in biomedical science for undergraduate students from underrepresented backgrounds. Here, we describe the implementation of team-based science combined with intensive mentoring to conduct a large-scale project examining the evolution of behavior. This system can be widely applied in other areas of STEM to promote research-intensive opportunities in STEM fields and to promote diversity in science.


Asunto(s)
Diversidad Cultural , Ciencia , Estudiantes , Curriculum , Humanos , Investigación , Ciencia/educación
2.
Evol Dev ; 24(5): 131-144, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35924750

RESUMEN

Evolution in response to a change in ecology often coincides with various morphological, physiological, and behavioral traits. For most organisms little is known about the genetic and functional relationship between evolutionarily derived traits, representing a critical gap in our understanding of adaptation. The Mexican tetra, Astyanax mexicanus, consists of largely independent populations of fish that inhabit at least 30 caves in Northeast Mexico, and a surface fish population, that inhabit the rivers of Mexico and Southern Texas. The recent application of molecular genetic approaches combined with behavioral phenotyping have established A. mexicanus as a model for studying the evolution of complex traits. Cave populations of A. mexicanus are interfertile with surface populations and have evolved numerous traits including eye degeneration, insomnia, albinism, and enhanced mechanosensory function. The interfertility of different populations from the same species provides a unique opportunity to define the genetic relationship between evolved traits and assess the co-evolution of behavioral and morphological traits with one another. To define the relationships between morphological and behavioral traits, we developed a pipeline to test individual fish for multiple traits. This pipeline confirmed differences in locomotor activity, prey capture, and startle reflex between surface and cavefish populations. To measure the relationship between traits, individual F2 hybrid fish were characterized for locomotor behavior, prey-capture behavior, startle reflex, and morphological attributes. Analysis revealed an association between body length and slower escape reflex, suggesting a trade-off between increased size and predator avoidance in cavefish. Overall, there were few associations between individual behavioral traits, or behavioral and morphological traits, suggesting independent genetic changes underlie the evolution of the measured behavioral and morphological traits. Taken together, this approach provides a novel system to identify genetic underpinnings of naturally occurring variation in morphological and behavioral traits.


Asunto(s)
Evolución Biológica , Characidae , Adaptación Fisiológica , Animales , Characidae/genética , México , Fenotipo
3.
J Exp Zool B Mol Dev Evol ; 334(7-8): 474-485, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32779370

RESUMEN

The ability to detect threatening stimuli and initiate an escape response is essential for survival and under stringent evolutionary pressure. In diverse fish species, acoustic stimuli activate Mauthner neurons, which initiate a C-start escape response. This reflexive behavior is highly conserved across aquatic species and provides a model for investigating the neural mechanism underlying the evolution of escape behavior. Here, we characterize evolved differences in the C-start response between populations of the Mexican cavefish, Astyanax mexicanus. Cave populations of A. mexicanus inhabit an environment devoid of light and macroscopic predators, resulting in evolved differences in various morphological and behavioral traits. We find that the C-start is present in river-dwelling surface fish and multiple populations of cavefish, but that response kinematics and probability differ between populations. The Pachón population of cavefish exhibits an increased response probability, a slower response latency and speed, and reduction of the maximum bend angle, revealing evolved differences between surface and cave populations. Analysis of the responses of two other independently evolved populations of cavefish, revealed the repeated evolution of reduced angular speed. Investigation of surface-cave hybrids reveals a correlation between angular speed and peak angle, suggesting these two kinematic characteristics are related at the genetic or functional levels. Together, these findings provide support for the use of A. mexicanus as a model to investigate the evolution of escape behavior.


Asunto(s)
Characidae/fisiología , Reflejo de Sobresalto , Estimulación Acústica , Animales , Evolución Biológica , Fenómenos Biomecánicos , Cuevas , Oscuridad , Reacción de Fuga/fisiología , Modelos Animales , Reflejo de Sobresalto/fisiología
4.
J Exp Zool B Mol Dev Evol ; 334(7-8): 397-404, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32638529

RESUMEN

A central question in biology is how naturally occurring genetic variation accounts for morphological and behavioral diversity within a species. The Mexican tetra, Astyanax mexicanus, has been studied for nearly a century as a model for investigating trait evolution. In March of 2019, researchers representing laboratories from around the world met at the Sixth Astyanax International Meeting in Santiago de Querétaro, Mexico. The meeting highlighted the expanding applications of cavefish to investigations of diverse aspects of basic biology, including development, evolution, and disease-based applications. A broad range of integrative approaches are being applied in this system, including the application of state-of-the-art functional genetic assays, brain imaging, and genome sequencing. These advances position cavefish as a model organism for addressing fundamental questions about the genetics and evolution underlying the impressive trait diversity among individual populations within this species.


Asunto(s)
Evolución Biológica , Characidae , Modelos Animales , Animales , Conducta Animal , Cuevas , Characidae/genética , Characidae/crecimiento & desarrollo , Characidae/fisiología , Oscuridad , Enfermedades de los Peces
5.
J Exp Zool B Mol Dev Evol ; 334(7-8): 530-539, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32017448

RESUMEN

Studying how different genotypes respond to environmental variation is essential to understand the genetic basis of adaptation. The Mexican tetra, Astyanax mexicanus, has cave and surface-dwelling morphotypes that have adapted to entirely different environments in the wild, and are now successfully maintained in lab conditions. While this has enabled the identification of genetic adaptations underlying a variety of physiological processes, few studies have directly compared morphotypes between lab-reared and natural populations. Such comparative approaches could help dissect the varying effects of environment and morphotype, and determine the extent to which phenomena observed in the lab are generalizable to conditions in the field. To this end, we take a transcriptomic approach to compare the Pachón cavefish and their surface fish counterparts in their natural habitats and the lab environment. We identify key changes in expression of genes implicated in metabolism and physiology between groups of fish, suggesting that morphotype (surface or cave) and environment (natural or lab) both alter gene expression. We find gene expression differences between cave and surface fish in their natural habitats are much larger than differences in expression between morphotypes in the lab environment. However, lab-raised cave and surface fish still exhibit numerous gene expression changes, supporting genetically encoded changes in livers of this species. From this, we conclude that a controlled laboratory environment may serve as an ideal setting to study the genetic underpinnings of metabolic and physiological differences between the cavefish and surface fish.


Asunto(s)
Characidae/metabolismo , Transcriptoma/fisiología , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Animales , Cuevas , Characidae/anatomía & histología , Characidae/genética , Oscuridad , Ambiente , Femenino , Perfilación de la Expresión Génica , Luz , Hígado/anatomía & histología , Hígado/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ARN , Transcriptoma/genética
6.
J Exp Zool B Mol Dev Evol ; 334(7-8): 423-437, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32614138

RESUMEN

Evolution in similar environments often leads to convergence of behavioral and anatomical traits. A classic example of convergent trait evolution is the reduced traits that characterize many cave animals: reduction or loss of pigmentation and eyes. While these traits have evolved many times, relatively little is known about whether these traits repeatedly evolve through the same or different molecular and developmental mechanisms. The small freshwater fish, Astyanax mexicanus, provides an opportunity to investigate the repeated evolution of cave traits. A. mexicanus exists as two forms, a sighted, surface-dwelling form and at least 29 populations of a blind, cave-dwelling form that initially develops eyes that subsequently degenerate. We compared eye morphology and the expression of eye regulatory genes in developing surface fish and two independently evolved cavefish populations, Pachón and Molino. We found that many of the previously described molecular and morphological alterations that occur during eye development in Pachón cavefish are also found in Molino cavefish. However, for many of these traits, the Molino cavefish have a less severe phenotype than Pachón cavefish. Further, cave-cave hybrid fish have larger eyes and lenses during early development compared with fish from either parental population, suggesting that some different changes underlie eye loss in these two populations. Together, these data support the hypothesis that these two cavefish populations evolved eye loss independently, yet through some of the same developmental and molecular mechanisms.


Asunto(s)
Anoftalmos/veterinaria , Evolución Biológica , Characidae/crecimiento & desarrollo , Animales , Cuevas , Characidae/anomalías , Characidae/genética , Ojo/crecimiento & desarrollo , Hibridación in Situ
7.
Dev Biol ; 441(2): 313-318, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29555241

RESUMEN

Understanding the genetic basis of trait evolution is critical to identifying the mechanisms that generated the immense amount of diversity observable in the living world. However, genetically manipulating organisms from natural populations with evolutionary adaptations remains a significant challenge. Astyanax mexicanus exists in two interfertile forms, a surface-dwelling form and multiple independently evolved cave-dwelling forms. Cavefish have evolved a number of morphological and behavioral traits and multiple quantitative trait loci (QTL) analyses have been performed to identify loci underlying these traits. These studies provide a unique opportunity to identify and test candidate genes for these cave-specific traits. We have leveraged the CRISPR/Cas9 genome editing techniques to characterize the effects of mutations in oculocutaneous albinism II (oca2), a candidate gene hypothesized to be responsible for the evolution of albinism in A. mexicanus cave populations. We generated oca2 mutant surface A. mexicanus. Surface fish with oca2 mutations are albino due to a disruption in the first step of the melanin synthesis pathway, the same step that is disrupted in albino cavefish. Hybrid offspring from crosses between oca2 mutant surface and cavefish are albino, definitively demonstrating the role of this gene in the evolution of albinism in this species. This research elucidates the role oca2 plays in pigmentation in fish, and establishes that this gene is solely responsible for the evolution of albinism in multiple cavefish populations. Finally, it demonstrates the utility of using genome editing to investigate the genetic basis of trait evolution.


Asunto(s)
Sistemas CRISPR-Cas , Characiformes/genética , Proteínas de Peces/genética , Edición Génica , Melatonina/genética , Proteínas de Transporte de Membrana/genética , Pigmentación/genética , Albinismo/genética , Albinismo/metabolismo , Animales , Characiformes/metabolismo , Proteínas de Peces/metabolismo , Melatonina/biosíntesis , Proteínas de Transporte de Membrana/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(42): 16933-8, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24085851

RESUMEN

When an organism colonizes a new environment, it needs to adapt both morphologically and behaviorally to survive and thrive. Although recent progress has been made in understanding the genetic architecture underlying morphological evolution, behavioral evolution is poorly understood. Here, we use the Mexican cavefish, Astyanax mexicanus, to study the genetic basis for convergent evolution of feeding posture. When river-dwelling surface fish became entrapped in the caves, they were confronted with dramatic changes in the availability and type of food source and in their ability to perceive it. In this setting, multiple independent populations of cavefish exhibit an altered feeding posture compared with their ancestral surface forms. We determined that this behavioral change in feeding posture is not due to changes in cranial facial morphology, body depth, or to take advantage of the expansion in the number of taste buds. Quantitative genetic analysis demonstrates that two different cave populations have evolved similar feeding postures through a small number of genetic changes, some of which appear to be distinct. This work indicates that independently evolved populations of cavefish can evolve the same behavioral traits to adapt to similar environmental challenges by modifying different sets of genes.


Asunto(s)
Conducta Animal/fisiología , Cuevas , Characidae/fisiología , Evolución Molecular , Conducta Alimentaria/fisiología , Sitios Genéticos/fisiología , Animales
10.
bioRxiv ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38585759

RESUMEN

A major goal of modern evolutionary biology is connecting phenotypic evolution with its underlying genetic basis. The Mexican cavefish (Astyanax mexicanus), a characin fish species comprised of a surface ecotype and a cave-derived ecotype, is well suited as a model to study the genetic mechanisms underlying adaptation to extreme environments. Here we map 206 previously published quantitative trait loci (QTL) for cave-derived traits in A. mexicanus to the newest version of the surface fish genome assembly, AstMex3. This analysis revealed that QTL cluster in the genome more than expected by chance, and this clustering is not explained by the distribution of genes in the genome. To investigate whether certain characteristics of the genome facilitate phenotypic evolution, we tested whether genomic characteristics, such as highly mutagenic CpG sites, are reliable predictors of the sites of trait evolution but did not find any significant trends. Finally, we combined the QTL map with previously collected expression and selection data to identify a list of 36 candidate genes that may underlie the repeated evolution of cave phenotypes, including rgrb which is predicted to be involved in phototransduction. We found this gene has disrupted exons in all non-hybrid cave populations but intact reading frames in surface fish. Overall, our results suggest specific "evolutionary hotspots" in the genome may play significant roles in driving adaptation to the cave environment in Astyanax mexicanus and demonstrate how this compiled dataset can facilitate our understanding of the genetic basis of repeated evolution in the Mexican cavefish.

11.
bioRxiv ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38948816

RESUMEN

Understanding the phenotypic consequences of naturally occurring genetic changes, as well as their impact on fitness, is fundamental to understanding how organisms adapt to an environment. This is critical when genetic variants have pleiotropic effects, as determining how each phenotype impacted by a gene contributes to fitness is essential to understand how and why traits have evolved. A striking example of a pleiotropic gene contributing to trait evolution is the oca2 gene, coding mutations in which underlie albinism and reductions of sleep in the blind Mexican cavefish, Astyanax mexicanus . Here, we characterize the effects of mutations in the oca2 gene on larval prey capture. We find that when conspecific surface fish with engineered mutations in the oca2 allele are hunting, they use cave-like, wide angle strikes to capture prey. However, unlike cavefish or surface fish in the dark, which rely on lateral line mediated hunting, oca2 mutant surface fish use vision when striking at prey from wide angles. Finally, we find that while oca2 mutant surface fish do not outcompete pigmented surface siblings in the dark, pigmented fish outcompete albino fish in the light. This raises the possibility that albinism is detrimental to larval feeding in a surface-like lighted environment, but does not have negative consequences for fish in cave-like, dark environments. Together, these results demonstrate that oca2 plays a role in larval feeding behavior in A. mexicanus . Further, they expand our understanding of the pleiotropic phenotypic consequences of oca2 in cavefish evolution.

12.
Zebrafish ; 21(3): 255-258, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38354295

RESUMEN

Astyanax mexicanus is an emerging model system used to study development, evolution, and behavior of multiple cavefish populations that have repeatedly evolved from conspecific surface fish. Although surface and cavefish live and breed in the laboratory, there are no rapid methods for distinguishing between different cavefish populations. We present 2 methods for genotyping fish for a total of 16 population-specific markers using methods that are easy and inexpensive to implement in a basic molecular biology laboratory. This resource will help researchers maintain independent stocks within the laboratory and distinguish between fish from different populations.


Asunto(s)
Characidae , Animales , Characidae/genética , Marcadores Genéticos , Cuevas , Técnicas de Genotipaje/métodos , Genotipo
13.
Curr Biol ; 33(18): R953-R955, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37751707

RESUMEN

While many species are active during specific time periods throughout the day, there is significant variation across species in preferred daily temporal niche. A new study investigates the molecular changes that occurred in a mammal that has evolved diurnality.


Asunto(s)
Ritmo Circadiano , Mamíferos , Animales , Luz
14.
iScience ; 26(9): 107431, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37636065

RESUMEN

Collective motion emerges from individual interactions which produce group-wide patterns in behavior. While adaptive changes to collective motion are observed across animal species, how local interactions change when these collective behaviors evolve is poorly understood. Here, we use the Mexican tetra, Astyanax mexicanus, which exists as a schooling surface form and a non-schooling cave form, to study differences in how fish alter their swimming in response to neighbors across ontogeny and between evolutionarily diverged populations. We find that surface fish undergo a transition to schooling mediated by changes in the way fish modulate speed and turning relative to neighbors. This transition begins with the tendency to align to neighbors emerging by 28 days post-fertilization and ends with the emergence of robust attraction by 70 days post-fertilization. Cavefish exhibit neither alignment nor attraction at any stage of development. These results reveal how evolution alters local interactions to produce striking differences in collective behavior.

15.
bioRxiv ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37034671

RESUMEN

Collective motion emerges from individual interactions which produce groupwide patterns in behavior. While adaptive changes to collective motion are observed across animal species, how local interactions change when these collective behaviors evolve is poorly understood. Here, we use the Mexican tetra, A. mexicanus, which exists as a schooling surface form and a non-schooling cave form, to study differences in how fish alter their swimming in response to neighbors across ontogeny and between evolutionarily diverged populations. We find that surface fish undergo a transition to schooling during development that occurs through increases in inter-individual alignment and attraction mediated by changes in the way fish modulate speed and turning relative to neighbors. Cavefish, which have evolved loss of schooling, exhibit neither of these schooling-promoting interactions at any stage of development. These results reveal how evolution alters local interaction rules to produce striking differences in collective behavior.

16.
Elife ; 122023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37498318

RESUMEN

The vertebrate brain is highly conserved topologically, but less is known about neuroanatomical variation between individual brain regions. Neuroanatomical variation at the regional level is hypothesized to provide functional expansion, building upon ancestral anatomy needed for basic functions. Classically, animal models used to study evolution have lacked tools for detailed anatomical analysis that are widely used in zebrafish and mice, presenting a barrier to studying brain evolution at fine scales. In this study, we sought to investigate the evolution of brain anatomy using a single species of fish consisting of divergent surface and cave morphs, that permits functional genetic testing of regional volume and shape across the entire brain. We generated a high-resolution brain atlas for the blind Mexican cavefish Astyanax mexicanus and coupled the atlas with automated computational tools to directly assess variability in brain region shape and volume across all populations. We measured the volume and shape of every grossly defined neuroanatomical region of the brain and assessed correlations between anatomical regions in surface fish, cavefish, and surface × cave F2 hybrids, whose phenotypes span the range of surface to cave. We find that dorsal regions of the brain are contracted, while ventral regions have expanded, with F2 hybrid data providing support for developmental constraint along the dorsal-ventral axis. Furthermore, these dorsal-ventral relationships in anatomical variation show similar patterns for both volume and shape, suggesting that the anatomical evolution captured by these two parameters could be driven by similar developmental mechanisms. Together, these data demonstrate that A. mexicanus is a powerful system for functionally determining basic principles of brain evolution and will permit testing how genes influence early patterning events to drive brain-wide anatomical evolution.


Asunto(s)
Evolución Biológica , Characidae , Animales , Ratones , Pez Cebra , Characidae/genética , Encéfalo , Fenotipo
17.
Integr Comp Biol ; 63(2): 393-406, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37218721

RESUMEN

Reduction or complete loss of traits is a common occurrence throughout evolutionary history. In spite of this, numerous questions remain about why and how trait loss has occurred. Cave animals are an excellent system in which these questions can be answered, as multiple traits, including eyes and pigmentation, have been repeatedly reduced or lost across populations of cave species. This review focuses on how the blind Mexican cavefish, Astyanax mexicanus, has been used as a model system for examining the developmental, genetic, and evolutionary mechanisms that underlie eye regression in cave animals. We focus on multiple aspects of how eye regression evolved in A. mexicanus, including the developmental and genetic pathways that contribute to eye regression, the effects of the evolution of eye regression on other traits that have also evolved in A. mexicanus, and the evolutionary forces contributing to eye regression. We also discuss what is known about the repeated evolution of eye regression, both across populations of A. mexicanus cavefish and across cave animals more generally. Finally, we offer perspectives on how cavefish can be used in the future to further elucidate mechanisms underlying trait loss using tools and resources that have recently become available.


Asunto(s)
Evolución Biológica , Characidae , Animales , Ojo , Characidae/genética , Pigmentación/genética , Cuevas
18.
Nat Commun ; 14(1): 2557, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137902

RESUMEN

Laboratory studies have demonstrated that a single phenotype can be produced by many different genotypes; however, in natural systems, it is frequently found that phenotypic convergence is due to parallel genetic changes. This suggests a substantial role for constraint and determinism in evolution and indicates that certain mutations are more likely to contribute to phenotypic evolution. Here we use whole genome resequencing in the Mexican tetra, Astyanax mexicanus, to investigate how selection has shaped the repeated evolution of both trait loss and enhancement across independent cavefish lineages. We show that selection on standing genetic variation and de novo mutations both contribute substantially to repeated adaptation. Our findings provide empirical support for the hypothesis that genes with larger mutational targets are more likely to be the substrate of repeated evolution and indicate that features of the cave environment may impact the rate at which mutations occur.


Asunto(s)
Characidae , Animales , Characidae/genética , Mutación , Fenotipo , Adaptación Fisiológica/genética , Genotipo , Evolución Biológica , Cuevas
19.
Zebrafish ; 20(2): 86-94, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37071855

RESUMEN

Animal model systems are dependent on the standardization of husbandry protocols that maximize growth and reduce generation time. The Mexican tetra, Astyanax mexicanus, exists as eyed surface and blind cave dwelling populations. The opportunity for comparative approaches between independently evolved populations has led to the rapid growth of A. mexicanus as a model for evolution and biomedical research. However, a slow and inconsistent growth rate remains a major limitation to the expanded application of A. mexicanus. Fortunately, this temporal limitation can be addressed through husbandry changes that accelerate growth rates while maintaining optimal health outcomes. Here, we describe a husbandry protocol that produces rapid growth rates through changes in diet, feeding frequency, growth sorting and progressive changes in tank size. This protocol produced robust growth rates and decreased the age of sexual maturity in comparison to our previous protocol. To determine whether changes in feeding impacted behavior, we tested fish in exploration and schooling assays. We found no difference in behavior between the two groups, suggesting that increased feeding and rapid growth will not impact the natural variation in behavioral traits. Taken together, this standardized husbandry protocol will accelerate the development of A. mexicanus as a genetic model.


Asunto(s)
Characidae , Maduración Sexual , Animales , Evolución Biológica , Pez Cebra , Characidae/genética , Conducta Alimentaria
20.
CBE Life Sci Educ ; 22(2): ar25, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37058442

RESUMEN

In-person undergraduate research experiences (UREs) promote students' integration into careers in life science research. In 2020, the COVID-19 pandemic prompted institutions hosting summer URE programs to offer them remotely, raising questions about whether undergraduates who participate in remote research can experience scientific integration and whether they might perceive doing research less favorably (i.e., not beneficial or too costly). To address these questions, we examined indicators of scientific integration and perceptions of the benefits and costs of doing research among students who participated in remote life science URE programs in Summer 2020. We found that students experienced gains in scientific self-efficacy pre- to post-URE, similar to results reported for in-person UREs. We also found that students experienced gains in scientific identity, graduate and career intentions, and perceptions of the benefits of doing research only if they started their remote UREs at lower levels on these variables. Collectively, students did not change in their perceptions of the costs of doing research despite the challenges of working remotely. Yet students who started with low cost perceptions increased in these perceptions. These findings indicate that remote UREs can support students' self-efficacy development, but may otherwise be limited in their potential to promote scientific integration.


Asunto(s)
COVID-19 , Estudiantes , Humanos , Pandemias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA