Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(3): e23454, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38315457

RESUMEN

Mitochondria shape intracellular Ca2+ signaling through the concerted activity of Ca2+ uptake via mitochondrial calcium uniporters and efflux by Na+ /Ca2+ exchangers (NCLX). Here, we describe a novel relationship among NCLX, intracellular Ca2+ , and autophagic activity. Conditions that stimulate autophagy in vivo and in vitro, such as caloric restriction and nutrient deprivation, upregulate NCLX expression in hepatic tissue and cells. Conversely, knockdown of NCLX impairs basal and starvation-induced autophagy. Similarly, acute inhibition of NCLX activity by CGP 37157 affects bulk and endoplasmic reticulum autophagy (ER-phagy) without significant impacts on mitophagy. Mechanistically, CGP 37157 inhibited the formation of FIP200 puncta and downstream autophagosome biogenesis. Inhibition of NCLX caused decreased cytosolic Ca2+ levels, and intracellular Ca2+ chelation similarly suppressed autophagy. Furthermore, chelation did not exhibit an additive effect on NCLX inhibition of autophagy, demonstrating that mitochondrial Ca2+ efflux regulates autophagy through the modulation of Ca2+ signaling. Collectively, our results show that the mitochondrial Ca2+ extrusion pathway through NCLX is an important regulatory node linking nutrient restriction and autophagy regulation.


Asunto(s)
Señalización del Calcio , Calcio , Clonazepam/análogos & derivados , Tiazepinas , Señalización del Calcio/fisiología , Calcio/metabolismo , Intercambiador de Sodio-Calcio , Mitocondrias/metabolismo , Autofagia , Sodio/metabolismo
2.
Biophys J ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454598

RESUMEN

The scientific literature on mitochondria has increased significantly over the years due to findings that these organelles have widespread roles in the onset and progression of pathological conditions such as metabolic disorders, neurodegenerative and cardiovascular diseases, inflammation, and cancer. Researchers have extensively explored how mitochondrial properties and functions are modified in different models, often using fluorescent inner mitochondrial membrane potential (ΔΨm) probes to assess functional mitochondrial aspects such as protonmotive force and oxidative phosphorylation. This review provides an overview of existing techniques to measure ΔpH and ΔΨm, highlighting their advantages, limitations, and applications. It discusses drawbacks of ΔΨm probes, especially when used without calibration, and conditions where alternative methods should replace ΔΨm measurements for the benefit of the specific scientific objectives entailed. Studies investigating mitochondria and their vast biological roles would be significantly advanced by the understanding of the correct applications as well as limitations of protonmotive force measurements and use of fluorescent ΔΨm probes, adopting more precise, artifact-free, sensitive, and quantitative measurements of mitochondrial functionality.

3.
J Biol Chem ; 299(3): 102904, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36642177

RESUMEN

Calcium (Ca2+) is a key regulator in diverse intracellular signaling pathways and has long been implicated in metabolic control and mitochondrial function. Mitochondria can actively take up large amounts of Ca2+, thereby acting as important intracellular Ca2+ buffers and affecting cytosolic Ca2+ transients. Excessive mitochondrial matrix Ca2+ is known to be deleterious due to opening of the mitochondrial permeability transition pore (mPTP) and consequent membrane potential dissipation, leading to mitochondrial swelling, rupture, and cell death. Moderate Ca2+ within the organelle, on the other hand, can directly or indirectly activate mitochondrial matrix enzymes, possibly impacting on ATP production. Here, we aimed to determine in a quantitative manner if extra- or intramitochondrial Ca2+ modulates oxidative phosphorylation in mouse liver mitochondria and intact hepatocyte cell lines. To do so, we monitored the effects of more modest versus supraphysiological increases in cytosolic and mitochondrial Ca2+ on oxygen consumption rates. Isolated mitochondria present increased respiratory control ratios (a measure of oxidative phosphorylation efficiency) when incubated with low (2.4 ± 0.6 µM) and medium (22.0 ± 2.4 µM) Ca2+ concentrations in the presence of complex I-linked substrates pyruvate plus malate and α-ketoglutarate, respectively, but not complex II-linked succinate. In intact cells, both low and high cytosolic Ca2+ led to decreased respiratory rates, while ideal rates were present under physiological conditions. High Ca2+ decreased mitochondrial respiration in a substrate-dependent manner, mediated by mPTP. Overall, our results uncover a Goldilocks effect of Ca2+ on liver mitochondria, with specific "just right" concentrations that activate oxidative phosphorylation.


Asunto(s)
Calcio , Mitocondrias , Fosforilación Oxidativa , Animales , Ratones , Calcio/metabolismo , Mitocondrias/metabolismo
4.
J Bioenerg Biomembr ; 56(2): 87-99, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38374292

RESUMEN

High-fat diet-induced metabolic changes are not restricted to the onset of cardiovascular diseases, but also include effects on brain functions related to learning and memory. This study aimed to evaluate mitochondrial markers and function, as well as cognitive function, in a rat model of metabolic dysfunction. Eight-week-old male Wistar rats were subjected to either a control diet or a two-hit protocol combining a high fat diet (HFD) with the nitric oxide synthase inhibitor L-NAME in the drinking water. HFD plus L-NAME induced obesity, hypertension, and increased serum cholesterol. These rats exhibited bioenergetic dysfunction in the hippocampus, characterized by decreased oxygen (O2) consumption related to ATP production, with no changes in H2O2 production. Furthermore, OPA1 protein expression was upregulated in the hippocampus of HFD + L-NAME rats, with no alterations in other morphology-related proteins. Consistently, HFD + L-NAME rats showed disruption of performance in the Morris Water Maze Reference Memory test. The neocortex did not exhibit either bioenergetic changes or alterations in H2O2 production. Calcium uptake rate and retention capacity in the neocortex of HFD + L-NAME rats were not altered. Our results indicate that hippocampal mitochondrial bioenergetic function is disturbed in rats exposed to a HFD plus L-NAME, thus disrupting spatial learning, whereas neocortical function remains unaffected.


Asunto(s)
Dieta Alta en Grasa , Memoria Espacial , Ratas , Animales , Masculino , Dieta Alta en Grasa/efectos adversos , Ratas Wistar , NG-Nitroarginina Metil Éster/farmacología , NG-Nitroarginina Metil Éster/metabolismo , Peróxido de Hidrógeno/metabolismo , Aprendizaje por Laberinto , Hipocampo/metabolismo , Mitocondrias/metabolismo
5.
Physiology (Bethesda) ; 37(5): 0, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35575253

RESUMEN

Laboratory rodents and cold-adapted animals in the wild use a significant amount of the energy derived from food intake for heat generation. Thermogenesis involving mitochondrial uncoupling in the brown adipose tissue differs quantitatively in mice, humans, and cold-adapted animals and could be an important ally to combat obesity if humans were prepared to deviate slightly from thermoneutral living conditions to activate this pathway.


Asunto(s)
Tejido Adiposo Pardo , Termogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Regulación de la Temperatura Corporal , Frío , Metabolismo Energético , Humanos , Ratones , Obesidad/metabolismo , Termogénesis/fisiología
6.
J Neurochem ; 165(4): 521-535, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36563047

RESUMEN

Intracellular Ca2+ concentrations are strictly controlled by plasma membrane transporters, the endoplasmic reticulum, and mitochondria, in which Ca2+ uptake is mediated by the mitochondrial calcium uniporter complex (MCUc), while efflux occurs mainly through the mitochondrial Na+ /Ca2+ exchanger (NCLX). RNAseq database repository searches led us to identify the Nclx transcript as highly enriched in astrocytes when compared with neurons. To assess the role of NCLX in mouse primary culture astrocytes, we inhibited its function both pharmacologically or genetically. This resulted in re-shaping of cytosolic Ca2+ signaling and a metabolic shift that increased glycolytic flux and lactate secretion in a Ca2+ -dependent manner. Interestingly, in vivo genetic deletion of NCLX in hippocampal astrocytes improved cognitive performance in behavioral tasks, whereas hippocampal neuron-specific deletion of NCLX impaired cognitive performance. These results unveil a role for NCLX as a novel modulator of astrocytic glucose metabolism, impacting on cognition.


Asunto(s)
Astrocitos , Calcio , Ratones , Animales , Astrocitos/metabolismo , Calcio/metabolismo , Intercambiador de Sodio-Calcio/genética , Mitocondrias/metabolismo , Glucólisis , Cognición , Sodio/metabolismo , Señalización del Calcio/fisiología
7.
Ann Neurol ; 91(5): 652-669, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35226368

RESUMEN

OBJECTIVE: Astrocytes play a significant role in the pathology of multiple sclerosis (MS). Nevertheless, for ethical reasons, most studies in these cells were performed using the Experimental Autoimmune Encephalomyelitis model. As there are significant differences between human and mouse cells, we aimed here to better characterize astrocytes from patients with MS (PwMS), focusing mainly on mitochondrial function and cell metabolism. METHODS: We obtained and characterized induced pluripotent stem cell (iPSC)-derived astrocytes from three PwMS and three unaffected controls, and performed electron microscopy, flow cytometry, cytokine and glutamate measurements, gene expression, in situ respiration, and metabolomics. We validated our findings using a single-nuclei RNA sequencing dataset. RESULTS: We detected several differences in MS astrocytes including: (i) enrichment of genes associated with neurodegeneration, (ii) increased mitochondrial fission, (iii) increased production of superoxide and MS-related proinflammatory chemokines, (iv) impaired uptake and enhanced release of glutamate, (v) increased electron transport capacity and proton leak, in line with the increased oxidative stress, and (vi) a distinct metabolic profile, with a deficiency in amino acid catabolism and increased sphingolipid metabolism, which have already been linked to MS. INTERPRETATION: Here we describe the metabolic profile of iPSC-derived astrocytes from PwMS and validate this model as a very powerful tool to study disease mechanisms and to perform non-invasive drug targeting assays in vitro. Our findings recapitulate several disease features described in patients and provide new mechanistic insights into the metabolic rewiring of astrocytes in MS, which could be targeted in future therapeutic studies. ANN NEUROL 2022;91:652-669.


Asunto(s)
Células Madre Pluripotentes Inducidas , Esclerosis Múltiple , Animales , Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Mitocondrias/metabolismo , Esclerosis Múltiple/patología
8.
Am J Physiol Renal Physiol ; 323(1): F92-F106, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35499238

RESUMEN

Caloric restriction (CR) prevents obesity and increases resilience against pathological stimuli in laboratory rodents. At the mitochondrial level, protection promoted by CR in the brain and liver is related to higher Ca2+ uptake rates and capacities, avoiding Ca2+-induced mitochondrial permeability transition. Dietary restriction has also been shown to increase kidney resistance against damaging stimuli; if these effects are related to similar mitochondrial adaptations has not been uncovered. Here, we characterized changes in mitochondrial function in response to 6 mo of CR in rats and measured bioenergetic parameters, redox balance, and Ca2+ homeostasis. CR promoted an increase in succinate-supported mitochondrial oxygen consumption rates. Although CR prevents mitochondrial reactive oxygen species production in many tissues, in kidney, we found that mitochondrial H2O2 release was enhanced in a succinate-dependent manner. Surprisingly, and opposite to the effects observed in the brain and liver, mitochondria from CR animals were more prone to Ca2+-induced mitochondrial permeability transition, in a manner reversed by the antioxidant dithiothreitol. CR mitochondria also displayed higher Ca2+ uptake rates, which were not accompanied by changes in Ca2+ efflux rates or related to altered inner mitochondrial membrane potentials or amounts of the mitochondrial Ca2+ uniporter. Instead, increased mitochondrial Ca2+ uptake rates in CR kidneys correlated with loss of mitochondrial Ca2+ uptake protein 2 (MICU2), a mitochondrial Ca2+ uniporter modulator. Interestingly, MICU2 is also modulated by CR in the liver, suggesting that it has a broader diet-sensitive regulatory role controlling mitochondrial Ca2+ homeostasis. Together, our results highlight the organ-specific bioenergetic, redox, and ionic transport results of CR, with some unexpected deleterious effects in the kidney.NEW & NOTEWORTHY Prevention of obesity through caloric restriction (CR) is well known to protect many tissues but has been poorly studied in kidneys. Here, we determined the effects of long-term CR in rat kidney mitochondria, which are central players in energy metabolism and aging. Surprisingly, we found that the diet increased mitochondrial reactive oxygen production and permeability transition. This suggests that the kidneys respond differently to restricted diets and may be more susceptible under CR.


Asunto(s)
Restricción Calórica , Peróxido de Hidrógeno , Animales , Peróxido de Hidrógeno/metabolismo , Riñón/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Obesidad/metabolismo , Ratas , Succinatos/metabolismo
9.
Nature ; 598(7882): 566, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34697474
10.
FASEB J ; 34(8): 9972-9981, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32609395

RESUMEN

Dietary restriction and reduced reproduction have been linked to long lifespans in the vast majority of species tested. Although decreased mitochondrial mass and/or function are hallmarks of aging, little is known about the mechanisms by which these organelles contribute to physiological aging or to the effects of lifespan-extending interventions, particularly with respect to oxidative phosphorylation and energy production. Here, we employed the nematode Caenorhabditis elegans to examine the effects of inhibition of germline proliferation and dietary restriction, both of which extend the lifespan of C. elegans, on mitochondrial respiratory activity in whole animals and isolated organelles. We found that oxygen consumption rates and mitochondrial mass were reduced in wild-type (WT) C. elegans subjected to bacterial deprivation (BD) compared with animals fed ad libitum (AL). In contrast, BD decreased the rate of oxygen uptake but not mitochondrial mass in germline-less glp-1(e2144ts) mutants. Interestingly, mitochondria isolated from animals subjected to BD and/or inhibition of germline proliferation showed no differences in complex I-mediated respiratory activity compared to control mitochondria, whereas both interventions enhanced the efficiency with which mitochondria utilized lipids as respiratory substrates. Notably, the combination of BD and inhibition of germline proliferation further increased mitochondrial lipid oxidation compared to either intervention alone. We also detected a striking correlation between lifespan extension in response to BD and/or inhibition of germline proliferation and the capacity of C. elegans to generate ATP from lipids. Our results thus suggest that the ability to oxidize lipids may be determinant in enhanced longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Complejo I de Transporte de Electrón/metabolismo , Privación de Alimentos , Lípidos/química , Longevidad , Mitocondrias/fisiología , Adenosina Trifosfato/metabolismo , Animales , Bacterias , Caenorhabditis elegans/metabolismo , Restricción Calórica , Metabolismo Energético , Microbiología de Alimentos , Estrés Oxidativo , Consumo de Oxígeno , Respiración
11.
An Acad Bras Cienc ; 93(1): e20191513, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33624715

RESUMEN

Scientists are facing enormous pressures posed by growing scientific communities and stagnant/reduced funding. In this scenario, mechanisms of knowledge achievement and management, as well as how recruitment, progression and evaluation are carried out should be reevaluated. We argue here that knowledge has become a profitable commodity and, as a consequence, excessive academic quantification, individual output assessment problems and abusive editorial market strategies have reached unsustainable levels. We propose to reinforce existing guidelines and to establish new ones to overcome these issues. Our proposal, the Initiative for Responsible Scientific Assessment (IRSA), has the main goal to strengthen and expand previous movements in the scientific community to promote higher quality research assessment, focused on better Science.

12.
Molecules ; 26(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069217

RESUMEN

The existence of a K+ cycle in mitochondria has been predicted since the development of the chemiosmotic theory and has been shown to be crucial for several cellular phenomena, including regulation of mitochondrial volume and redox state. One of the pathways known to participate in K+ cycling is the ATP-sensitive K+ channel, MitoKATP. This channel was vastly studied for promoting protection against ischemia reperfusion when pharmacologically activated, although its molecular identity remained unknown for decades. The recent molecular characterization of MitoKATP has opened new possibilities for modulation of this channel as a mechanism to control cellular processes. Here, we discuss different strategies to control MitoKATP activity and consider how these could be used as tools to regulate metabolism and cellular events.


Asunto(s)
Mitocondrias/metabolismo , Potasio/metabolismo , Animales , Humanos , Transporte Iónico , Modelos Biológicos , Canales de Potasio/metabolismo , Antiportadores de Potasio-Hidrógeno/metabolismo
13.
Mol Hum Reprod ; 26(12): 938-952, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33118034

RESUMEN

Offspring born to obese and diabetic mothers are prone to metabolic diseases, a phenotype that has been linked to mitochondrial dysfunction and endoplasmic reticulum (ER) stress in oocytes. In addition, metabolic diseases impact the architecture and function of mitochondria-ER contact sites (MERCs), changes which associate with mitofusin 2 (MFN2) repression in muscle, liver and hypothalamic neurons. MFN2 is a potent modulator of mitochondrial metabolism and insulin signaling, with a key role in mitochondrial dynamics and tethering with the ER. Here, we investigated whether offspring born to mice with MFN2-deficient oocytes are prone to obesity and diabetes. Deletion of Mfn2 in oocytes resulted in a profound transcriptomic change, with evidence of impaired mitochondrial and ER function. Moreover, offspring born to females with oocyte-specific deletion of Mfn2 presented increased weight gain and glucose intolerance. This abnormal phenotype was linked to decreased insulinemia and defective insulin signaling, but not mitochondrial and ER defects in offspring liver and skeletal muscle. In conclusion, this study suggests a link between disrupted mitochondrial/ER function in oocytes and increased risk of metabolic diseases in the progeny. Future studies should determine whether MERC architecture and function are altered in oocytes from obese females, which might contribute toward transgenerational transmission of metabolic diseases.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Oocitos/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Femenino , GTP Fosfohidrolasas/genética , Homeostasis/fisiología , Ratones , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Músculo Esquelético/metabolismo , Transducción de Señal
14.
J Bioenerg Biomembr ; 52(4): 269-277, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32462240

RESUMEN

Caloric restriction (CR) is widely known to increase life span and resistance to different types of injuries in several organisms. We have previously shown that mitochondria from livers or brains of CR animals exhibit higher calcium uptake rates and lower sensitivity to calcium-induced mitochondrial permeability transition (mPT), an event related to the resilient phenotype exhibited by these organs. Given the importance of calcium in metabolic control and cell homeostasis, we aimed here to uncover possible changes in mitochondrial calcium handling, redox balance and bioenergetics in cardiac and skeletal muscle mitochondria in response to six months of CR. Unexpectedly, we found that CR does not alter the susceptibility to mPT in muscle (cardiac or skeletal), nor calcium uptake rates. Despite the lack in changes in calcium transport properties, CR consistently decreased respiration in the presence of ATP synthesis in heart and soleus muscle. In heart, such changes were accompanied by a decrease in respiration in the absence of ATP synthesis, lower maximal respiratory rates and a reduced rate of hydrogen peroxide release. Hydrogen peroxide release was unaltered by CR in skeletal muscle. No changes were observed in inner membrane potentials and respiratory control ratios. Together, these results highlight the tissue-specific bioenergetic and ion transport effects induced by CR, demonstrating that resilience against calcium-induced mPT is not present in all tissues.


Asunto(s)
Restricción Calórica/normas , Metabolismo Energético/fisiología , Músculo Esquelético/inmunología , Miocardio/inmunología , Animales , Masculino , Ratas , Ratas Sprague-Dawley
15.
FASEB J ; 33(12): 13176-13188, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31480917

RESUMEN

Changes in mitochondrial size and shape have been implicated in several physiologic processes, but their role in mitochondrial Ca2+ uptake regulation and overall cellular Ca2+ homeostasis is largely unknown. Here we show that modulating mitochondrial dynamics toward increased fusion through expression of a dominant negative (DN) form of the fission protein [dynamin-related protein 1 (DRP1)] markedly increased both mitochondrial Ca2+ retention capacity and Ca2+ uptake rates in permeabilized C2C12 cells. Similar results were seen using the pharmacological fusion-promoting M1 molecule. Conversely, promoting a fission phenotype through the knockdown of the fusion protein mitofusin (MFN)-2 strongly reduced the mitochondrial Ca2+ uptake speed and capacity in these cells. These changes were not dependent on modifications in mitochondrial calcium uniporter expression, inner membrane potentials, or the mitochondrial permeability transition. Implications of mitochondrial morphology modulation on cellular calcium homeostasis were measured in intact cells; mitochondrial fission promoted lower basal cellular calcium levels and lower endoplasmic reticulum (ER) calcium stores, as indicated by depletion with thapsigargin. Indeed, mitochondrial fission was associated with ER stress. Additionally, the calcium-replenishing process of store-operated calcium entry was impaired in MFN2 knockdown cells, whereas DRP1-DN-promoted fusion resulted in faster cytosolic Ca2+ increase rates. Overall, our results show a novel role for mitochondrial morphology in the regulation of mitochondrial Ca2+ uptake, which impacts cellular Ca2+ homeostasis.-Kowaltowski, A. J., Menezes-Filho, S. L., Assali, E. A., Gonçalves, I. G., Cabral-Costa, J. V., Abreu, P., Miller, N., Nolasco, P., Laurindo, F. R. M., Bruni-Cardoso, A., Shirihai, O. Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Línea Celular , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Homeostasis , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Mitocondrias/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Tapsigargina/farmacología
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(2): 143-151, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29155055

RESUMEN

High plasma levels of fatty acids occur in a variety of metabolic diseases. Cellular effects of fatty acid overload resulting in negative cellular responses (lipotoxicity) are often studied in vitro, in an attempt to understand mechanisms involved in these diseases. Fatty acids are poorly soluble, and thus usually studied when complexed to albumins such as bovine serum albumin (BSA). The conjugation of fatty acids to albumin requires care pertaining to preparation of the solutions, effective free fatty acid concentrations, use of different fatty acid species, types of BSA, appropriate controls and ensuring cellular fatty acid uptake. This review discusses lipotoxicity models, the potential problems encountered when using these cellular models, as well as practical solutions for difficulties encountered.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Ácidos Grasos/metabolismo , Trastornos del Metabolismo de los Lípidos/metabolismo , Modelos Biológicos , Animales , Bovinos , Humanos , Albúmina Sérica Bovina/metabolismo
17.
Biochim Biophys Acta ; 1861(5): 430-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26923434

RESUMEN

Mechanistic target of rapamycin complex 1 (mTORC1) loss of function reduces adiposity whereas partial mTORC1 inhibition enhances fat deposition. Herein we evaluated how constitutive mTORC1 activation in adipocytes modulates adiposity in vivo. Mice with constitutive mTORC1 activation in adipocytes induced by tuberous sclerosis complex (Tsc)1 deletion and littermate controls were evaluated for body mass, energy expenditure, glucose and fatty acid metabolism, mitochondrial function, mRNA and protein contents. Adipocyte-specific Tsc1 deletion reduced visceral, but not subcutaneous, fat mass, as well as adipocyte number and diameter, phenotypes that were associated with increased lipolysis, UCP-1 content (browning) and mRNA levels of pro-browning transcriptional factors C/EBPß and ERRα. Adipocyte Tsc1 deletion enhanced mitochondrial oxidative activity, fatty acid oxidation and the expression of PGC-1α and PPARα in both visceral and subcutaneous fat. In brown adipocytes, however, Tsc1 deletion did not affect UCP-1 content and basal respiration. Adipocyte Tsc1 deletion also reduced visceral adiposity and enhanced glucose tolerance, liver and muscle insulin signaling and adiponectin secretion in mice fed with purified low- or high-fat diet. In conclusion, adipocyte-specific Tsc1 deletion enhances mitochondrial activity, induces browning and reduces visceral adiposity in mice.


Asunto(s)
Adipocitos Marrones/enzimología , Adipocitos Blancos/enzimología , Tejido Adiposo Pardo/enzimología , Adiposidad , Grasa Intraabdominal/enzimología , Mitocondrias/enzimología , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adipocitos Marrones/ultraestructura , Adipocitos Blancos/ultraestructura , Adiponectina/deficiencia , Adiponectina/genética , Tejido Adiposo Pardo/ultraestructura , Adiposidad/genética , Animales , Respiración de la Célula , Dieta con Restricción de Grasas , Dieta Alta en Grasa , Metabolismo Energético , Activación Enzimática , Regulación de la Expresión Génica , Genotipo , Glucosa/metabolismo , Insulina/metabolismo , Grasa Intraabdominal/ultraestructura , Lipólisis , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/ultraestructura , Oxidación-Reducción , Fenotipo , Transducción de Señal , Factores de Tiempo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
18.
Stem Cells ; 34(3): 743-55, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26638184

RESUMEN

Mouse skin mesenchymal stem cells (msMSCs) are dermis CD105(+) CD90(+) CD73(+) CD29(+) CD34(-) mesodermal precursors which, after in vitro induction, undergo chondro, adipo, and osteogenesis. Extensive metabolic reconfiguration has been found to occur during differentiation, and the bioenergetic status of a cell is known to be dependent on the quality and abundance of the mitochondrial population, which may be regulated by fusion and fission. However, little is known regarding the impact of mitochondrial dynamics on the differentiation process. We addressed this knowledge gap by isolating MSCs from Swiss female mice, inducing these cells to differentiate into osteo, chondro, and adipocytes and measuring changes in mass, morphology, dynamics, and bioenergetics. Mitochondrial biogenesis was increased in adipogenesis, as evaluated through confocal microscopy, citrate synthase activity, and mtDNA content. The early steps of adipo and osteogenesis involved mitochondrial elongation, as well as increased expression of mitochondrial fusion proteins Mfn1 and 2. Chondrogenesis involved a fragmented mitochondrial phenotype, increased expression of fission proteins Drp1, Fis1, and 2, and enhanced mitophagy. These events were accompanied by profound bioenergetic alterations during the commitment period. Moreover, knockdown of Mfn2 in adipo and osteogenesis and the overexpression of a dominant negative form of Drp1 during chondrogenesis resulted in a loss of differentiation ability. Overall, we find that mitochondrial morphology and its regulating processes of fission/fusion are modulated early on during commitment, leading to alterations in the bioenergetic profile that are important for differentiation. We thus propose a central role for mitochondrial dynamics in the maintenance/commitment of mesenchymal stem cells.


Asunto(s)
Diferenciación Celular/genética , Dinaminas/biosíntesis , GTP Fosfohidrolasas/biosíntesis , Células Madre Mesenquimatosas , Mitocondrias/metabolismo , Adipogénesis/genética , Animales , Condrogénesis/genética , ADN Mitocondrial/genética , Dinaminas/genética , Femenino , GTP Fosfohidrolasas/genética , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Mitocondrias/genética , Dinámicas Mitocondriales/genética , Osteogénesis/genética , Piel/citología , Piel/metabolismo
19.
Biochem J ; 473(20): 3421-3449, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27729586

RESUMEN

Aging is often accompanied by a decline in mitochondrial mass and function in different tissues. Additionally, cell resistance to stress is frequently found to be prevented by higher mitochondrial respiratory capacity. These correlations strongly suggest mitochondria are key players in aging and senescence, acting by regulating energy homeostasis, redox balance and signalling pathways central in these processes. However, mitochondria display a wide array of functions and signalling properties, and the roles of these different characteristics are still widely unexplored. Furthermore, differences in mitochondrial properties and responses between tissues and cell types, and how these affect whole body metabolism are also still poorly understood. This review uncovers aspects of mitochondrial biology that have an impact upon aging in model organisms and selected mammalian cells and tissues.


Asunto(s)
Envejecimiento/fisiología , Mitocondrias/metabolismo , Células Madre Adultas/metabolismo , Animales , Encéfalo/metabolismo , Caenorhabditis elegans/metabolismo , Metabolismo Energético/fisiología , Humanos , Modelos Biológicos , Levaduras/metabolismo
20.
Biochim Biophys Acta ; 1847(6-7): 587-98, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25843549

RESUMEN

Mitochondria play a key role in adaptation during stressing situations. Cardiolipin, the main anionic phospholipid in mitochondrial membranes, is expected to be a determinant in this adaptive mechanism since it modulates the activity of most membrane proteins. Here, we used Saccharomyces cerevisiae subjected to conditions that affect mitochondrial metabolism as a model to determine the possible role of cardiolipin in stress adaptation. Interestingly, we found that thermal stress promotes a 30% increase in the cardiolipin content and modifies the physical state of mitochondrial membranes. These changes have effects on mtDNA stability, adapting cells to thermal stress. Conversely, this effect is cardiolipin-dependent since a cardiolipin synthase-null mutant strain is unable to adapt to thermal stress as observed by a 60% increase of cells lacking mtDNA (ρ0). Interestingly, we found that the loss of cardiolipin specifically affects the segregation of mtDNA to daughter cells, leading to a respiratory deficient phenotype after replication. We also provide evidence that mtDNA physically interacts with cardiolipin both in S. cerevisiae and in mammalian mitochondria. Overall, our results demonstrate that the mitochondrial lipid cardiolipin is a key determinant in the maintenance of mtDNA stability and segregation.


Asunto(s)
Cardiolipinas/metabolismo , Respiración de la Célula/fisiología , ADN Mitocondrial/química , Mitocondrias/patología , Membranas Mitocondriales/química , Estrés Oxidativo , Saccharomyces cerevisiae/química , Variaciones en el Número de Copia de ADN , ADN Mitocondrial/metabolismo , Transporte de Electrón , Transferencia Resonante de Energía de Fluorescencia , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Consumo de Oxígeno , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA