Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 17(28): 18273-7, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26120607

RESUMEN

The quantum transport properties of a Cu-CNT composite are studied using a non-equilibrium Green's function approach combined with the self-consistent-charge density-functional tight-binding method. The results show that the electrical conductance of the composite depends strongly on CNT density and alignment but more weakly on chirality. Alignment with the applied bias is preferred and the conductance of the composite increases as its mass density increases.

2.
RSC Adv ; 14(12): 8502-8512, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38476176

RESUMEN

The consideration of biopolymers with natural products offers promising and effective materials with intrinsic and extrinsic properties that are utilized in several applications. Electrospinning is a method known for its unique and efficient performance in developing polymer-based nanofibers with tunable and diverse properties presented as good surface area, morphology, porosity, and fiber diameters during fabrication. In this work, we have developed an electrospun sodium alginate (SA) incorporated with pulverized Moringa oleifera seed powder (PMO) as a potential natural biosorbent material for water treatment applications. The developed fibers when observed using a scanning electron microscope (SEM), presented pure sodium alginate with smooth fiber (SAF) characteristics of an average diameter of about 515.09 nm (±114.33). Addition of pulverized Moringa oleifera at 0.5%, 2%, 4%, 6%, and 8% (w/w) reduces the fiber diameter to an average of about 240 nm with a few spindle-like pulverized Moringa oleifera particles beads of 300 nm (±77.97) 0.5% particle size and 110 nm (±32.19) with the clear observation of rougher spindle-like pulverized Moringa oleifera particle beads of 680 nm (±131.77) at 8% of alginate/Moringa oleifera fiber (AMF). The results from the rheology presented characteristic shear-thinning or pseudoplastic behaviour with a decline in viscosity, with characteristic behaviour as the shear rate increases, indicative of an ideal polymer solution suitable for the spinning process. Fourier transform infrared spectroscopy (FT-IR) shows the presence of amine and amide functional groups are prevalent on the alginate-impregnated moringa with water stability nanofibers and thermogravimetric analysis (TGA) with change in degradation properties in a clear indication and successful incorporation of the Moringa oleifera in the electrospun fiber. The key findings from this study position nanofibers as sustainable composites fiber for potential applications in water treatment, especifically heavy metal adsorption.

3.
Biomacromolecules ; 14(5): 1287-98, 2013 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-23534615

RESUMEN

Biomaterials that can stimulate stem cell differentiation without growth factor supplementation provide potent and cost-effective scaffolds for regenerative medicine. We hypothesize that a scaffold prepared from cellulose and silk blends can direct stem cell chondrogenic fate. We systematically prepared cellulose blends with silk at different compositions using an environmentally benign processing method based on ionic liquids as a common solvent. We tested the effect of blend compositions on the physical properties of the materials as well as on their ability to support mesenchymal stem cell (MSC) growth and chondrogenic differentiation. The stiffness and tensile strength of cellulose was significantly reduced by blending with silk. The characterized materials were tested using MSCs derived from four different patients. Growing MSCs on a specific blend combination of cellulose and silk in a 75:25 ratio significantly upregulated the chondrogenic marker genes SOX9, aggrecan, and type II collagen in the absence of specific growth factors. This chondrogenic effect was neither found with neat cellulose nor the cellulose/silk 50:50 blend composition. No adipogenic or osteogenic differentiation was detected on the blends, suggesting that the cellulose/silk 75:25 blend induced specific stem cell differentiation into the chondrogenic lineage without addition of the soluble growth factor TGF-ß. The cellulose/silk blend we identified can be used both for in vitro tissue engineering and as an implantable device for stimulating endogenous stem cells to initiate cartilage repair.


Asunto(s)
Materiales Biocompatibles/farmacología , Celulosa/química , Condrocitos/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Seda/química , Ingeniería de Tejidos/métodos , Agrecanos/genética , Agrecanos/metabolismo , Materiales Biocompatibles/química , Diferenciación Celular , Condrocitos/citología , Condrocitos/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Líquidos Iónicos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Resistencia a la Tracción , Andamios del Tejido
4.
Waste Manag ; 156: 1-11, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36424243

RESUMEN

The integration of hydrogen in the primary energy mix requires a major technological shift in virtually every energy-related application. This study has attempted to investigate the techno-economic solar photovoltaic (PV) integrated water electrolysis and waste incineration system. Three different strategies, i.e., (i) PV + Battery(Hybrid mode with required batteries); (ii) auto-ignition (Direct coupling); and (iii) PV + Secondary-Electrolyzer(Direct coupling assisted with secondary electrolyzer), have been envisioned. The 'PV + Battery' consume 42.42 % and 15.07 % less energy than the auto-ignition and 'PV + Secondary-Electrolyzer' methods. However, the capital cost of 'PV + Battery' has been calculated to be 15.4 % and 11.8 % more than auto-ignition and 'PV + Secondary-Electrolyzer, respectively.The energy consumption relative to waste input, the 'PV + Battery' method used 80 % less energy, while auto-ignition and 'PV + Secondary-Electrolyzer' showed 70.5 % and 77.5 % less energy, respectively. Furthermore, these approaches showed a vast difference in cost-benefit for the longer run. 'PV + Battery' was forecasted to be 73.3 % and 23.3 % more expensive than auto-ignition and 'PV + Secondary-Electrolyzer' methods, respectively, for 30 years. Overall, this study can benefit from using either of these methods depending on the application, usage scale, and climatic conditions.


Asunto(s)
Hidrógeno , Incineración , Suministros de Energía Eléctrica
5.
J Nanosci Nanotechnol ; 12(10): 8116-22, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23421187

RESUMEN

Magnetic nanoparticles in the hollow region of carbon nanotubes have attraction due to their changing physical electrical and magnetic properties. Nickel zinc ferrite plays an important role in many applications due to its superior magnetic properties. Ni0.8Zn0.2Fe2O4 single crystals were encapsulated in multiwall carbon nanotubes (MWCNTs). The magnetic nano crystals were prepared using a sol-gel self combustion method at the sintering temperature of 750 degrees C and were characterized by XRD, FESEM, TEM and VSM. Initial permeability, Q-factor and relative loss factor were measured by impedance vector network analyzer. XRD patterns were used for the phase identification. FESEM images show morphology and dimensions of the grains of Ni0.8Zn0.2Fe2O4 single crystals and Ni0.8Zn0.2Fe2O4 single crystals in MWCNTs. TEM images were used to investigate single crystal and encapsulation of Ni0.8Zn0.2Fe2O4 single crystals in the MWCNTs. VSM results confirmed super paramagnetic behaviour of encapsulated Ni0.8Zn0.2Fe2O4 single crystals. It was also attributed that encapsulated Ni0.8Zn0.2Fe2O4 single crystals in MWCNTs showed a higher initial permeability (51.608), Q-factor (67.069), and low loss factor (0.0002) as compared to Ni0.8Zn0.2Fe2O4 single crystals. The new encapsulated Ni0.8Zn0.2Fe2O4 single crystals in the MWCNTs may have potential applications in electronic and medical industries.

6.
J Nanosci Nanotechnol ; 12(10): 8100-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23421185

RESUMEN

In seabed logging the magnitude of electromagnetic (EM) waves for the detection of a hydrocarbon reservoir in the marine environment is very important. Having a strong EM source for exploration target 4000 m below the sea floor is a very challenging task. A new carbon nanotubes (CNT) fibres/aluminium based EM transmitter is developed and NiZn ferrite as magnetic feeders was used in a scaled tank to evaluate the presence of oil. Resistive scaled tank experiments with a scale factor of 2000 were carried out. X-ray Diffraction (XRD), Raman Spectroscopy and Field Emission Scanning Electron Microscope (FESEM) were done to characterize the synthesized magnetic feeders. Single phase Ni0.76Mg0.04Zn0.2Fe2O4, obtained by the sol-gel method and sintered at 700 degrees C in air, has a [311] major peak. FESEM results show nanoparticles with average diameters of 17-45 nm. Samples which have a high Q-factor (approximately 50) was used as magnetic feeders for the EM transmitter. The magnitude of the EM waves of this new EM transmitter increases up to 400%. A curve fitting method using MATLAB software was done to evaluate the performance of the new EM transmitter. The correlation value with CNT fibres/aluminium-NiZnFe2O4 base transmitter shows a 152.5% increase of the magnetic field strength in the presence of oil. Modelling of the scale tank which replicates the marine environment was done using the Finite Element Method (FEM). In conclusion, FEM was able to delineate the presence of oil with greater magnitude of E-field (16.89%) and the B field (4.20%) due to the new EM transmitter.

7.
ACS Sustain Chem Eng ; 10(20): 6596-6608, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35634268

RESUMEN

Water-based processing of graphene-typically considered as physicochemically incompatible with water in the macroscale-emerges as the key challenge among the central postulates of green nanotechnology. These problematic concerns are derived from the complex nature of graphene in the family of sp2-carbon nanoallotropes. Indeed, nanomaterials hidden under the common "graphene" signboard are very rich in morphological and physicochemical variants. In this work, inspired by the adhesion chemistry of mussel biomaterials, we have synthesized novel, water-processable graphene-polylevodopa (PDOPA) hybrids. Graphene and PDOPA were covalently amalgamated via the "growth-from" polymerization of l-DOPA (l-3,4-dihydroxyphenylalanine) monomer in air, yielding homogeneously PDOPA-coated (23 wt %) (of thickness 10-20 nm) hydrophilic flakes. The hybrids formed >1 year stable and water-processable aqueous dispersions and further conveniently processable paints of viscosity 0.4 Pa·s at 20 s-1 and a low yield stress τ0 up to 0.12 Pa, hence exhibiting long shelf-life stability and lacking sagging after application. Demonstrating their applicability, we have found them as surfactant-like nanoparticles stabilizing the larger, pristine graphene agglomerates in water in the optimized graphene/graphene-PDOPA weight ratio of 9:1. These characteristics enabled the manufacture of conveniently paintable coatings of low surface resistivity of 1.9 kΩ sq-1 (0.21 Ω·m) which, in turn, emerge as potentially applicable in textronics, radar-absorbing materials, or electromagnetic interference shielding.

8.
J Nanosci Nanotechnol ; 11(3): 2652-6, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21449447

RESUMEN

Aluminum substituted yttrium iron garnet nano particles with compositional variation of Y(3.0-x) A1(x)Fe5O12, where x = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were prepared using sol gel technique. The X-ray diffraction results showed that the best garnet phase appeared when the sintering temperature was 800 degrees C. Nano-crystalline particles with high purity and sizes ranging from 20 to 100 nm were obtained. It was found that the aluminum substitution had resulted in a sharp fall of the d-spacing when x = 2, which we speculated is due to the preference of the aluminum atoms to the smaller tetrahedron and octahedron sites instead of the much larger dodecahedron site. High resolution transmission electron microscope (HRTEM) and electron diffraction (ED) patterns showed single crystal nanoparticles were obtained from this method. The magnetic measurement gave moderate values of initial permeability; the highest value of 5.3 was shown by sample Y3Fe5O12 at more than 100 MHz which was attributed to the morphology of the microstructure which appeared to be homogeneous. This had resulted in an easy movement of domain walls. The substitution of aluminum for yttrium is speculated to cause a cubic to rhombodedral structural change and had weakened the super-exchange interactions thus a fall of real permeability was observed. This might have created a strain in the sub-lattices and had subsequently caused a shift of resonance frequencies to more than 1.8 GHz when x > 0.5.


Asunto(s)
Aluminio/química , Hierro/química , Magnetismo , Nanoestructuras/química , Nanoestructuras/ultraestructura , Itrio/química , Cristalización/métodos , Ensayo de Materiales , Tamaño de la Partícula , Transición de Fase
9.
Polymers (Basel) ; 13(21)2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34771217

RESUMEN

The ever-increasing demand for materials to have superior properties and satisfy functions in the field of soft robotics and beyond has resulted in the advent of the new field of four-dimensional (4D) printing. The ability of these materials to respond to various stimuli inspires novel applications and opens several research possibilities. In this work, we report on the 4D printing of one such Shape Memory Polymer (SMP) tBA-co-DEGDA (tert-Butyl Acrylate with diethylene glycol diacrylate). The novelty lies in establishing the relationship between the various characteristic properties (tensile stress, surface roughness, recovery time, strain fixity, and glass transition temperature) concerning the fact that the print parameters of the laser pulse frequency and print speed are governed in the micro-stereolithography (Micro SLA) method. It is found that the sample printed with a speed of 90 mm/s and 110 pulses/s possessed the best batch of properties, with shape fixity percentages of about 86.3% and recovery times as low as 6.95 s. The samples built using the optimal parameters are further subjected to the addition of graphene nanoparticles, which further enhances all the mechanical and surface properties. It has been observed that the addition of 0.3 wt.% of graphene nanoparticles provides the best results.

10.
Beilstein J Org Chem ; 6: 34, 2010 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-20502605

RESUMEN

We present the synthesis and selected physicochemical properties of several novel symmetrical and unsymmetrical alpha,omega-nucleobase mono- and bis-amide conjugated systems containing aliphatic, aromatic or saccharidic linkages. The final stage of the synthesis involves condensation of a subunit bearing carboxylic group with an amine subunit. 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) was found to be a particularly effective condensing agent. The subunits containing carboxylic groups were obtained by acidic hydrolysis of N-1 Michael adducts of uracils or N-9 Michael adducts of 6-chloropurine with methyl acrylate. The amines used were aliphatic/aromatic diamines, adenine, 5-substituted 1-(ω-aminoalkyl)uracils and 5'-amino-2',5'-dideoxythymidine. The title compounds may find application as antiprotozoal agents. Moreover, preliminary microscopy TEM studies of supramolecular behaviour showed that target molecules with bolaamphiphilic structures were capable of forming highly ordered assemblies, mainly nanofibres.

11.
Materials (Basel) ; 13(3)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973192

RESUMEN

The surrounding gas atmosphere can have a significant influence on the electrical properties of multi-walled carbon nanotube (CNT) ensembles. In this study, we subjected CNT films to various gaseous environments or vacuum to observe how such factors alter the electrical resistance of networks at high temperatures. We showed that the removal of adsorbed water and other contaminants from the surface under reduced pressure significantly affects the electrical conductivity of the material. We also demonstrated that exposing the CNT films to the hydrogen atmosphere (as compared to a selection of gases of inert and oxidizing character) at elevated temperatures results in a notable reduction of electrical resistance. We believe that the observed sensitivity of the electrical properties of the CNT films to hydrogen or vacuum at elevated temperatures could be of practical importance.

12.
Adv Mater ; 32(34): e2000608, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32672882

RESUMEN

The fundamental colloidal properties of pristine graphene flakes remain incompletely understood, with conflicting reports about their chemical character, hindering potential applications that could exploit the extraordinary electronic, thermal, and mechanical properties of graphene. Here, the true amphipathic nature of pristine graphene flakes is demonstrated through wet-chemistry testing, optical microscopy, electron microscopy, and density functional theory, molecular dynamics, and Monte Carlo calculations, and it is shown how this fact paves the way for the formation of ultrastable water/oil emulsions. In contrast to commonly used graphene oxide flakes, pristine graphene flakes possess well-defined hydrophobic and hydrophilic regions: the basal plane and edges, respectively, the interplay of which allows small flakes to be utilized as stabilizers with an amphipathic strength that depends on the edge-to-surface ratio. The interactions between flakes can be also controlled by varying the oil-to-water ratio. In addition, it is predicted that graphene flakes can be efficiently used as a new-generation stabilizer that is active under high pressure, high temperature, and in saline solutions, greatly enhancing the efficiency and functionality of applications based on this material.

13.
J Chem Phys ; 130(21): 214903, 2009 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-19508094

RESUMEN

We report studies of the orientation state of multiwalled carbon nanotubes (MWNTs) dispersions in steady and transient shear flows. Uncured epoxy was used as a viscous Newtonian suspending medium and samples were prepared from "aligned" MWNTs using methods previously reported [S. S. Rahatekar et al., J. Rheol. 50, 599 (2006)]. Orientation measurements were performed in both the flow-gradient (1-2) and flow-vorticity (1-3) plane of simple shear flow using in situ x-ray scattering techniques. Steady state measurements in the 1-2 plane indicate that the MWNT orientation is shear rate dependent, with the MWNTs orienting closer to the flow direction at higher shear rates. During steady shear, anisotropy was measured to be higher in the 1-2 plane than in the 1-3 plane, demonstrating that the nanotube orientation state is not unaxially symmetric in shear. It is hypothesized that the steady state MWNT orientation is governed primarily by a rate-dependent state of nanotube aggregation/disaggregation, which was separately characterized by optical microscopy of the same samples under shear. High flux synchrotron radiation allowed for time-resolved structural studies in transient flows. A partial relaxation of flow-induced anisotropy was observed following flow cessation, despite the very small rotational diffusivity estimated for these nanotubes. Long transients are observed in step-down experiments, as the orientation state changes in response to the slow tube aggregation process.

14.
J Nanosci Nanotechnol ; 9(8): 4543-53, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19928116

RESUMEN

Electromagnetic characterization of CNT films fabricated by thermal decomposition of SiC has been performed. Purification and/or uncapping treatment conditions at an elevated temperature of 400 degrees C under flowing oxygen or carbon dioxide have been studied. A near field microwave microscope was used to measure the real and imaginary parts of the complex permittivity of CNT films through the frequency shift and the change in reciprocal quality factor between two extreme positions of an evanescent microwave probe-tip (in contact with the sample, and away from interaction with it). A theoretical two-point model was proposed to confirm experimental data, which showed poor conductivity of the CNT film as grown but has slight improvement after 40 min treatment.

15.
ACS Appl Mater Interfaces ; 11(36): 33207-33220, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31393099

RESUMEN

The following paper explores the nature of electronic transport in a hybrid carbon nanotube-graphene conductive network. These networks may have a tremendous impact on the future formation of new electrical conductors, batteries, and supercapacitors, as well as many other electronic and electrical applications. The experiments described show that the deposition of graphene nanoflakes within a carbon nanotube network improves both its electrical conductivity and its current-carrying capacity. They also show that the effectiveness of doping is enhanced. To explain the effects observed in the hybrid carbon nanotube-graphene conductive network, a theoretical model was developed. The theory explains that graphenes are not merely effective conductive fillers of the carbon nanotube networks but also effective bridges that are able to introduce additional states at the Fermi level of carbon nanotubes.

16.
Small ; 4(8): 1217-22, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18666161

RESUMEN

A simple process to spin fibers consisting of multi-walled carbon nanotubes (CNTs) directly from their lyotropic liquid-crystalline phase is reported. Ethylene glycol is used as the lyotropic solvent, enabling a wider range of CNT types to be spun than previously. Fibers spun with CNTs and nitrogen-doped CNTs are compared. X-ray analysis reveals that nitrogen-doped CNTs have a misalignment of only +/-7.8 degrees to the fiber axis. The tensile strength of the CNT and nitrogen-doped CNT fibers is comparable but the modulus and electrical conductivity of the are lower. The electrical conductivity of both types of CNT fibers is found to be highly anisotropic. The results are discussed in context of the microstructure of the CNTs and fibers.


Asunto(s)
Nanotecnología , Nanotubos de Carbono/química , Cristalización , Electroquímica , Cristales Líquidos/ultraestructura , Microscopía Electrónica de Rastreo , Nanocompuestos/química , Nanocompuestos/ultraestructura , Nanotubos de Carbono/ultraestructura , Difracción de Rayos X
17.
Nanoscale ; 11(1): 145-157, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30525144

RESUMEN

Copper-CNT (carbon nanotube) composite materials are promising alternatives to conventional conductors in applications ranging from interconnects in microelectronics to electrical cabling in aircraft and vehicles. Unfortunately, exploiting the full potential of these composites is difficult due to the poor Cu-CNT electro-mechanical interface. We demonstrate through large-scale ab initio calculations and sonication experiments that this problem can be addressed by CNT surface modification. Our calculations show that covalent functionalization of CNTs below 6.7 at% significantly improves Cu-CNT wetting and the mechanical properties of the composite. Oxidative pre-treatment of CNTs enhances the Young's modulus of the composite by nearly a factor 3 above that of pure Cu, whereas amination slightly improves the electrical current density with respect to the unmodified Cu-CNT system in the high bias regime. However, only nitrogen doping can effectively improve both the mechanical and electrical properties of the composite. As the experiments show, consistent with the calculations, substitutional doping with nitrogen effectively improves adhesion of the CNT to the Cu matrix. We also predict an improvement in the mechanical properties for the composite containing doped double-wall CNTs. Moreover, the calculations indicate that the presence of nitrogen dopants almost doubles locally the transmission through the nanotube and reduces the back scattering in the Cu matrix around the CNT. The computed electrical conductance of N-doped Cu-CNT "carpets" exceeds that of an undoped system by ∼160%.

18.
Nanomaterials (Basel) ; 8(11)2018 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-30453602

RESUMEN

The production of an innovative, high-performance graphene-based polymer nanocomposite using cost-effective techniques was pursued in this study. Well-dispersed and uniformly distributed graphene platelets within a polymer matrix, with strong interfacial bonding between the platelets and the matrix, provided an optimal nanocomposite system for industrial interest. This study reports on the reinforcement of high molecular weight multimodal-high-density polyethylene reinforced by a microwave-induced plasma graphene, using melt intercalation. The tailored process included designing a suitable screw configuration, paired with coordinating extruder conditions and blending techniques. This enabled the polymer to sufficiently degrade, predominantly through thermomechanical-degradation, as well as thermo-oxidative degradation, which subsequently created a suitable medium for the graphene sheets to disperse readily and distribute evenly within the polymer matrix. Different microscopy techniques were employed to prove the effectiveness. This was then qualitatively assessed by Raman spectroscopy, X-ray diffraction, rheology, mechanical testing, density measurements, thermal expansion, and thermogravimetric analysis, confirming both the originality as well as the effectiveness of the process.

19.
Nanoscale ; 9(9): 3212-3221, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28221390

RESUMEN

The electronic properties of carbon nanostructures such as carbon nanotubes (CNTs) or graphene can easily be tuned by the action of various doping agents. We present an experimental study and numerical analysis of how and why metallic and semiconductive CNTs can be p-doped by exposing them to two interhalogens: iodine monochloride and iodine monobromide. Simple application of these compounds was found to reduce the electrical resistance by as much as 2/3 without causing any unfavorable chemical modification, which could disrupt the highly conductive network of sp2 carbon atoms. To gain better insight into the underlying mechanism of the observed experimental results, we provide a first principles indication of how interhalogens interact with model metallic (5,5) and semiconductive (10,0) CNTs.

20.
Sci Rep ; 7(1): 12193, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28939817

RESUMEN

We explored high-field (60 T) magneto-resistance (MR) with two carbon nanotube (CNT) material classes: (1) unaligned single-wall CNTs (SWCNT) films with controlled metallic SWCNT concentrations and doping degree and (2) CNT fiber with aligned, long-length microstructure. All unaligned SWCNT films showed localized hopping transport where high-field MR saturation definitively supports spin polarization instead of a more prevalent wave function shrinking mechanism. Nitric acid exposure induced an insulator to metal transition and reduced the positive MR component. Aligned CNT fiber, already on the metal side of the insulator to metal transition, had positive MR without saturation and was assigned to classical MR involving electronic mobility. Subtracting high-field fits from the aligned fiber's MR yielded an unconfounded negative MR, which was assigned to weak localization. It is concluded that fluctuation induced tunnelling, an extrinsic transport model accounting for most of the aligned fiber's room temperature resistance, appears to lack MR field dependence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA