Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Arch Virol ; 169(4): 77, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517556

RESUMEN

Papillomaviruses are small circular DNA viruses that infect epithelial and mucosal cells and have co-evolved with their hosts. Some papillomaviruses in mammals are well studied (especially those associated with disease). However, there is limited information on papillomaviruses associated with avian hosts. From a cloacal swab sample of a mallard (Anas platyrhynchos) sampled in Missouri, USA (6 Jan 2023), we identified a papillomavirus (7839 nt) that shares ~68% genome-wide nucleotide sequence identity with Anas platyrhynchos papillomavirus 1 (AplaPV1) from a mallard sampled in Newfoundland (Canada) and ~40% with AplaPV2 from a mallard sampled in Minnesota (USA) with mesenchymal dermal tumors. The papillomavirus we identified shares 73.6% nucleotide sequence identity in the L1 gene with that of AplaPV1 and thus represents a new AplaPV type (AplaPV3). The genome sequence of AplaPV3 shares >97% identity with three partial PV genome sequences (1316, 1997, and 4241 nt) identified in a mallard in India, indicating that that virus was also AplaPV3.


Asunto(s)
Aves , Patos , Animales , Missouri , Genoma , Canadá , Mamíferos
2.
Arch Virol ; 169(6): 120, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753261

RESUMEN

Gyroviruses are small single-stranded DNA (ssDNA) viruses that are largely associated with birds. Chicken anemia virus is the most extensively studied gyrovirus due to its disease impact on the poultry industry. However, we know much less about gyroviruses infecting other avian species. To investigate gyroviruses infecting waterfowl, we determined six complete genome sequences that fall into three gyrovirus groups, referred to as waterfowl gyrovirus 1 (n = 3), 2 (n = 2), and 3 (n = 1), in organs from hunter-harvested waterfowl from Arizona (USA). The waterfowl gyrovirus 1 variants were identified in multiple organs of a single American wigeon and represent a tentative new species. The waterfowl gyrovirus 2 variants were identified in the livers of two American wigeons and share >70% VP1 nucleotide sequence identity with gyrovirus 9, previously identified in the spleen of a Brazilian Pekin duck (MT318123) and a human fecal sample (KP742975). Waterfowl gyrovirus 3 was identified in a northern pintail spleen sample, and it shares >73% VP1 nucleotide sequence identity with two gyrovirus 13 sequences previously identified in Brazilian Pekin duck spleens (MT318125 and MT318127). These gyroviruses are the first to be identified in waterfowl in North America, as well as in American wigeons and northern pintails.


Asunto(s)
Enfermedades de las Aves , Infecciones por Circoviridae , Genoma Viral , Gyrovirus , Filogenia , Animales , Arizona , Genoma Viral/genética , Gyrovirus/genética , Gyrovirus/clasificación , Gyrovirus/aislamiento & purificación , Enfermedades de las Aves/virología , Infecciones por Circoviridae/virología , Infecciones por Circoviridae/veterinaria , Anseriformes/virología , Patos/virología , ADN Viral/genética
3.
Arch Virol ; 168(1): 23, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36593430

RESUMEN

Viruses in the family Circoviridae have small circular single-stranded DNA (ssDNA) genomes. Circoviruses are known to infect a wide variety of animals, with notable disease pathology in psittacine (psittacine beak and feather disease) and porcine (postweaning multisystemic wasting syndrome) species. There is still a dearth of research investigating circoviruses associated with felid species. In six fecal samples collected from bobcats (Lynx rufus) in California from 2010 to 2011, we identified six viruses belonging to the genera Circovirus (n = 1) and Cyclovirus (n = 5), using a high-throughput-sequencing-based approach. Of these, the virus in the genus Circovirus represents a new species, as it shares only 54-60% genome-wide sequence identity with the other members of this genus. The five viruses in the genus Cyclovirus represent three new species, sharing <73% genome-wide sequence identity with all other cycloviruses. Three of the cycloviruses belong to a single putative species and were obtained from the feces of three individual bobcats, sharing 95.7-99.9% sequence identity, whereas the other two unique cycloviruses were identified in a single fecal sample. At present, it is unknown whether the identified viruses infect bobcats, their prey, or their gut parasites.


Asunto(s)
Circoviridae , Circovirus , Lynx , Animales , Porcinos , Circoviridae/genética , Circovirus/genética , California , Heces , ADN de Cadena Simple , Filogenia , Genoma Viral
4.
Arch Virol ; 168(11): 277, 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37864606

RESUMEN

The family Anelloviridae comprises negative single-stranded circular DNA viruses. Within this family, there are 30 established genera. Anelloviruses in the genus Gyrovirus have been identified infecting various avian species, whereas those in the remaining 29 genera have been found primarily infecting various mammal species. We renamed the 146 anellovirus species with binomial species names, as required by the International Committee on Taxonomy of Viruses (ICTV) using a "genus + freeform epithet" format.


Asunto(s)
Anelloviridae , Gyrovirus , Virus , Animales , Anelloviridae/genética , Mamíferos
5.
Arch Virol ; 169(1): 12, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38151635

RESUMEN

Coyotes (Canis latrans) have a broad geographic distribution across North and Central America. Despite their widespread presence in urban environments in the USA, there is limited information regarding viruses associated with coyotes in the USA and in particular the state of Arizona. To explore viruses associated with coyotes, particularly small DNA viruses, 44 scat samples were collected (April-June 2021 and November 2021-January 2022) along the Salt River near Phoenix, Arizona (USA), along 43 transects (500 m). From these samples, we identified 11 viral genomes: two novel circoviruses, six unclassified cressdnaviruses, and two anelloviruses. One of the circoviruses is most closely related to a circovirus sequence identified from an aerosolized dust sample in Arizona, USA. The second circovirus is most closely related to a rodent-associated circovirus and canine circovirus. Of the unclassified cressdnaviruses, three encode replication-associated proteins that are similar to those found in protists (Histomonas meleagridis and Monocercomonoides exilis), implying an evolutionary relationship with or a connection to similar unidentified protist hosts. The two anelloviruses are most closely related to those found in rodents, and this suggests a diet-related identification.


Asunto(s)
Coyotes , ADN Circular , Animales , Perros , Arizona , Virus ADN/genética
6.
Arch Virol ; 168(1): 18, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36593361

RESUMEN

Polyomaviruses are oncogenic viruses that are generally thought to have co-evolved with their hosts. While primate and rodent polyomaviruses are increasingly well-studied, less is known about polyomaviruses that infect other mammals. In an effort to gain insight into polyomaviruses associated with carnivores, we surveyed fecal samples collected in the USA from bobcats (Lynx rufus), pumas (Puma concolor), Canada lynxes (Lynx canadensis), and grizzly bears (Ursus arctos). Using a viral metagenomic approach, we identified six novel polyomavirus genomes. Surprisingly, four of the six genomes showed a phylogenetic relationship to polyomaviruses found in prey animals. These included a putative rabbit polyomavirus from a bobcat fecal sample and two possible deer-trophic polyomaviruses from Canada lynx feces. One polyomavirus found in a grizzly bear sample was found to be phylogenetically distant from previously identified polyomaviruses. Further analysis of the grizzly bear fecal sample showed that it contained anelloviruses that are known to infect pigs, suggesting that the bear might have preyed on a wild or domestic pig. Interestingly, a polyomavirus genome identified in a puma fecal sample was found to be closely related both to raccoon polyomavirus 1 and to Lyon-IARC polyomavirus, the latter of which was originally identified in human saliva and skin swab specimens but has since been found in samples from domestic cats (Felis catus).


Asunto(s)
Ciervos , Lynx , Poliomavirus , Puma , Ursidae , Conejos , Animales , Gatos , Humanos , Porcinos , Poliomavirus/genética , Filogenia , Heces
7.
Arch Virol ; 168(10): 253, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715108

RESUMEN

Rodents are the largest and most diverse group of mammals. Covering a wide range of structural and functional adaptations, rodents successfully occupy virtually every terrestrial habitat, and they are often found in close association with humans, domestic animals, and wildlife. Although a significant amount of research has focused on rodents' prominence as known reservoirs of zoonotic viruses, there has been less emphasis on the viral ecology of rodents in general. Here, we utilized a viral metagenomics approach to investigate polyomaviruses in wild rodents from the Baja California peninsula, Mexico, using fecal samples. We identified a novel polyomavirus in fecal samples from two rodent species, a spiny pocket mouse (Chaetodipus spinatus) and a Dulzura kangaroo rat (Dipodomys simulans). These two polyomaviruses represent a new species in the genus Betapolyomavirus. Sequences of this polyomavirus cluster phylogenetically with those of other rodent polyomaviruses and two other non-rodent polyomaviruses (WU and KI) that have been identified in the human respiratory tract. Through our continued work on seven species of rodents, we endeavor to explore the viral diversity associated with wild rodents on the Baja California peninsula and expand on current knowledge of rodent viral ecology and evolution.


Asunto(s)
Poliomavirus , Roedores , Animales , Humanos , Ratones , Poliomavirus/genética , México , Polyomaviridae , Animales Domésticos
8.
J Virol ; 95(18): e0035321, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34232703

RESUMEN

Feline leukemia virus (FeLV) is associated with a range of clinical signs in felid species. Differences in disease processes are closely related to genetic variation in the envelope (env) region of the genome of six defined subgroups. The primary hosts of FeLV are domestic cats of the Felis genus that also harbor endogenous FeLV (enFeLV) elements stably integrated in their genomes. EnFeLV elements display 86% nucleotide identity to exogenous, horizontally transmitted FeLV (FeLV-A). Variation between enFeLV and FeLV-A is primarily in the long terminal repeat (LTR) and env regions, which potentiates generation of the FeLV-B recombinant subgroup during natural infection. The aim of this study was to examine recombination behavior of exogenous FeLV (exFeLV) and enFeLV in a natural FeLV epizootic. We previously described that of 65 individuals in a closed colony, 32 had productive FeLV-A infection, and 22 of these individuals had detectable circulating FeLV-B. We cloned and sequenced the env gene of FeLV-B, FeLV-A, and enFeLV spanning known recombination breakpoints and examined between 1 and 13 clones in 22 animals with FeLV-B to assess sequence diversity and recombination breakpoints. Our analysis revealed that FeLV-A sequences circulating in the population, as well as enFeLV env sequences, are highly conserved. We documented many recombination breakpoints resulting in the production of unique FeLV-B genotypes. More than half of the cats harbored more than one FeLV-B variant, suggesting multiple recombination events between enFeLV and FeLV-A. We concluded that FeLV-B was predominantly generated de novo within each host, although we could not definitively rule out horizontal transmission, as nearly all cats harbored FeLV-B sequences that were genetically highly similar to those identified in other individuals. This work represents a comprehensive analysis of endogenous-exogenous retroviral interactions with important insights into host-virus interactions that underlie disease pathogenesis in a natural setting. IMPORTANCE Feline leukemia virus (FeLV) is a felid retrovirus with a variety of disease outcomes. Exogenous FeLV-A is the virus subgroup almost exclusively transmitted between cats. Recombination between FeLV-A and endogenous FeLV analogues in the cat genome may result in emergence of largely replication-defective but highly virulent subgroups. FeLV-B is formed when the 3' envelope (env) region of endogenous FeLV (enFeLV) recombines with that of the exogenous FeLV (exFeLV) during viral reverse transcription and integration. Both domestic cats and wild relatives of the Felis genus harbor enFeLV, which has been shown to limit FeLV-A disease outcome. However, enFeLV also contributes genetic material to the recombinant FeLV-B subgroup. This study evaluates endogenous-exogenous recombination outcomes in a naturally infected closed colony of cats to determine mechanisms and risk of endogenous retroviral recombination during exogenous virus exposure that leads to enhanced virulence. While FeLV-A and enFeLV env regions were highly conserved from cat to cat, nearly all individuals with emergent FeLV-B had unique combinations of genotypes, representative of a wide range of recombination sites within env. The findings provide insight into unique recombination patterns for emergence of new pathogens and can be related to similar viruses across species.


Asunto(s)
Retrovirus Endógenos/genética , Genes env , Virus de la Leucemia Felina/genética , Leucemia Felina/virología , ARN Viral/genética , Recombinación Genética , Infecciones por Retroviridae/virología , Animales , Gatos , Retrovirus Endógenos/clasificación , Femenino , Virus de la Leucemia Felina/clasificación , Masculino , Secuencias Repetidas Terminales
9.
Arch Virol ; 167(12): 2753-2759, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36169719

RESUMEN

The A-strain of maize streak virus (MSV) causes maize streak disease (MSD), which is a major biotic threat to maize production in sub-Saharan Africa. Previous studies have described different MSV strains of economic importance from southern and eastern African countries and how eastern African regions are hubs for MSV diversification. Despite these efforts, due to a lack of extensive sampling, there is limited knowledge about the MSV-A diversity in Ethiopia. Here, field sampling of maize plants and wild grasses with visible MSD symptoms was carried out in the western Ethiopian regions of Gambela, Oromia, and Benishangul-Gumuz during the maize-growing season of 2019. The complete genomes of MSV isolates (n = 60) were cloned and sequenced by the Sanger method. We used a model-based phylogenetic approach to analyse 725 full MSV genome sequences available in the GenBank database together with newly determined genome sequences from Ethiopia to determine their subtypes and identify recombinant lineages. Of the 127 fields accessed, MSD prevalence was highest, at 96%, in the Gambela region and lowest in Oromia, at 66%. The highest mean symptom severity of 4/5 (where 5 is the highest and 1 the lowest) was observed in Gambela and Benishangul-Gumuz. Our results show that these newly determined MSV isolates belong to recombinant lineage V of the A1 subtype, with the widest dissemination and greatest economic significance in sub-Saharan Africa and the adjacent Indian Ocean islands.


Asunto(s)
Virus de la Veta de Maíz , Virus de la Veta de Maíz/genética , Filogenia , Genoma Viral , Enfermedades de las Plantas , Zea mays , Etiopía
10.
Arch Virol ; 167(2): 659-663, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35066682

RESUMEN

Adenoviruses have been identified in a wide variety of avian species, and in some species, they have been shown to cause disease and increase mortality. As part of an endeavor to investigate viruses associated with common terns (Sterna hirundo), a novel adenovirus was identified in fecal samples from two common terns on Gull Island, Lake Ontario, Canada. The coding-complete genome sequence of the new adenovirus is 31,094 bp, containing 28 putative genes, and this is the first adenovirus to be associated with terns. The virus was identified in two out of 13 fecal samples from tern chicks, and it was found to be most closely related to duck adenovirus 1, with the DNA polymerase sharing 58% amino acid sequence identity. Phylogenetic analysis based on DNA polymerase protein sequences showed that the new virus forms a distinct sub-branch within the atadenovirus clade and likely represents a new species in this genus.


Asunto(s)
Infecciones por Adenoviridae , Charadriiformes , Adenoviridae , Infecciones por Adenoviridae/veterinaria , Animales , Pollos , Filogenia
11.
Arch Virol ; 168(1): 13, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576610

RESUMEN

Papillomaviruses (PVs) are host-species-specific and tissue-specific viruses that infect a diverse array of vertebrate hosts, including humans and non-human primates, with varying pathogenic outcomes. Although primate PVs have been studied extensively, no complete genome sequences of PVs from lemurs have been determined to date. Saliva samples from three critically endangered, captive black-and-white ruffed lemurs (Varecia variegata variegata) at the Duke Lemur Center (USA) were analyzed, using high-throughput sequencing, for the presence of oral papillomaviruses. We identified three PVs from two individuals, one of which had a coinfection with two different PVs. Two of the three PVs share 99.6% nucleotide sequence identity, and we have named these isolates "Varecia variegata papillomavirus 1" (VavPV1). The third PV shares ~63% nucleotide sequence identity with VavPV1, and thus, we have named it "Varecia variegata papillomavirus 2" (VavPV2). Based on their E1 + E2 + L1 protein sequence phylogeny, the VavPVs form a distinct clade. This clade likely represents a novel genus, with VavPV1 and VavPV2 belonging to two distinct species. Our findings represent the first complete genome sequences of PVs found in lemuriform primates, with their presence suggesting the potential existence of diverse PVs across the over 100 species of lemurs.


Asunto(s)
Lemur , Lemuridae , Animales , Humanos , Lemuridae/genética , Primates
12.
Arch Virol ; 167(12): 2771-2775, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36045303

RESUMEN

Bats harbour a diverse array of viruses, some of which are zoonotic, and are one of the most speciose groups of mammals on earth. As part of an ongoing bat-associated viral diversity research project, we identified three cycloviruses (family Circoviridae) in fecal samples of silver-haired bats (Lasionycteris noctivagans) caught in Cave Creek Canyon of Arizona (USA). Two of the three identified genomes represent two new species in the genus Cyclovirus. Cycloviruses have been found in a wide range of environments and hosts; however, little is known about their biology. These new genomes of cycloviruses are the first from silver-haired bats, adding to the broader knowledge of cyclovirus diversity. With continuing studies, it is likely that additional viruses of the family Circoviridae will be identified in Arizona bat populations.


Asunto(s)
Quirópteros , Circoviridae , Animales , Heces , Arizona
13.
Arch Virol ; 167(12): 2709-2713, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36269418

RESUMEN

We present a novel statovirus in geladas (Theropithecus gelada), graminivorous primates endemic to the Ethiopian highlands. Using a high-throughput sequencing approach, we identified contiguous sequences in feces from two adult female geladas in the Simien Mountains National Park, Ethiopia, that share similarities to statoviruses. Our phylogenetic analysis of the whole genome, as well as the RNA-dependent RNA polymerase (RdRp) and capsid protein (CP) amino acid sequences, revealed that the gelada statoviruses cluster with those from other primates (laboratory populations of Macaca nemestrina and Macaca mulatta). As the first report of statovirus in wild primates, this finding contributes to our understanding of the phylogenetic and geographic distribution of statoviruses and their hosts.


Asunto(s)
Theropithecus , Animales , Femenino , Filogenia , Etiopía
14.
Phytopathology ; 112(11): 2253-2272, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35722889

RESUMEN

Over the last decade, viral metagenomic studies have resulted in the discovery of thousands of previously unknown viruses. These studies are likely to play a pivotal role in obtaining an accurate and robust understanding of how viruses affect the stability and productivity of ecosystems. Among the metagenomics-based approaches that have been developed since the beginning of the 21st century, shotgun metagenomics applied specifically to virion-associated nucleic acids (VANA) has been used to disentangle the diversity of the viral world. We summarize herein the results of 24 VANA-based studies, focusing on plant and insect samples conducted over the last decade (2010 to 2020). Collectively, viruses from 85 different families were reliably detected in these studies, including capsidless RNA viruses that replicate in fungi, oomycetes, and plants. Finally, strengths and weaknesses of the VANA approach are summarized and perspectives of applications in detection, epidemiological surveillance, environmental monitoring, and ecology of plant viruses are provided. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Ácidos Nucleicos , Virus de Plantas , Metagenómica/métodos , Ecosistema , Enfermedades de las Plantas , Virus de Plantas/genética , Virión/genética , Plantas
15.
J Gen Virol ; 102(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34726588

RESUMEN

Viral metagenomic studies have enabled the discovery of many unknown viruses and revealed that viral communities are much more diverse and ubiquitous than previously thought. Some viruses have multiple genome components that are encapsidated either in separate virions (multipartite viruses) or in the same virion (segmented viruses). In this study, we identify what is possibly a novel bipartite plant-associated circular single-stranded DNA virus in a wild prickly pear cactus, Opuntia discolor, that is endemic to the Chaco ecoregion in South America. Two ~1.8 kb virus-like circular DNA components were recovered, one encoding a replication-associated protein (Rep) and the other a capsid protein (CP). Both of the inferred protein sequences of the Rep and CP are homologous to those encoded by members of the family Geminiviridae. These two putatively cognate components each have a nonanucleotide sequence within a likely hairpin structure that is homologous to the origins of rolling-circle replication (RCR), found in diverse circular single-stranded DNA viruses. In addition, the two components share similar putative replication-associated iterative sequences (iterons), which in circular single-stranded DNA viruses are important for Rep binding during the initiation of RCR. Such molecular features provide support for the possible bipartite nature of this virus, which we named utkilio virus (common name of the Opuntia discolor in South America) components A and B. In the infectivity assays conducted in Nicotiana benthamiana plants, only the A component of utkilio virus, which encodes the Rep protein, was found to move and replicate systemically in N. benthamiana. This was not true for component B, for which we did not detect replication, which may have been due to this being a defective molecule or because of the model plants (N. benthamiana) used for the infection assays. Future experiments need to be conducted with other plants, including O. discolor, to understand more about the biology of these viral components.


Asunto(s)
Virus ADN/aislamiento & purificación , ADN Circular/genética , ADN Viral/genética , Geminiviridae/genética , Opuntia/virología , Enfermedades de las Plantas/virología , Proteínas Virales/genética , Secuencia de Aminoácidos , Secuencia de Bases , Virus ADN/clasificación , Virus ADN/genética , Geminiviridae/clasificación , Geminiviridae/aislamiento & purificación , Genoma Viral , Filogenia
16.
Arch Virol ; 166(12): 3437-3441, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34542726

RESUMEN

Members of the family Circoviridae are known to infect several avian species, with the ability to cause severe disease outcomes in some species. Using a high-throughput sequencing-informed approach, we identified two novel lineages of circoviruses, referred to as wigfec circovirus 1 and 2, in faecal matter of American wigeons (Mareca americana) collected in Arizona, USA. Wigfec circovirus 1 was identified in eight samples and is most closely related to the other waterfowl circoviruses, sharing ~64% genome-wide sequence identity with duck circoviruses. On the other hand, wigfec circovirus 2 was identified in two samples and is most closely related to two circoviruses identified in bat samples, sharing ~71% genome-wide pairwise identity. Both novel circoviruses were recovered from samples collected at the same location two months apart. Furthermore, in one sample, both of these viruses were identified, indicating these viruses are likely common amongst these birds and/or their environment.


Asunto(s)
Infecciones por Circoviridae , Circoviridae , Circovirus , Animales , Circoviridae/genética , Infecciones por Circoviridae/veterinaria , Circovirus/genética , Patos , Genoma Viral , Filogenia
17.
Arch Virol ; 166(10): 2937-2942, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34347169

RESUMEN

The genus Gyrovirus was assigned to the family Anelloviridae in 2017 with only one recognized species, Chicken anemia virus. Over the last decade, many diverse viruses related to chicken anemia virus have been identified but not classified. Here, we provide a framework for the classification of new species in the genus Gyrovirus and communicate the establishment of nine new species. We adopted the 'Genus + freeform epithet' binomial system for the naming of these species.


Asunto(s)
Gyrovirus/clasificación , Terminología como Asunto , Anelloviridae/clasificación , Anelloviridae/genética , Animales , Proteínas de la Cápside/genética , Virus de la Anemia del Pollo/clasificación , Virus de la Anemia del Pollo/genética , ADN Viral/genética , Bases de Datos Genéticas , Genoma Viral/genética , Gyrovirus/genética , Humanos , Filogenia , Análisis de Secuencia de ADN
18.
Arch Virol ; 166(10): 2943-2953, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34383165

RESUMEN

Anelloviruses are small negative-sense single-stranded DNA viruses with genomes ranging in size from 1.6 to 3.9 kb. The family Anelloviridae comprised 14 genera before the present changes. However, in the last five years, a large number of diverse anelloviruses have been identified in various organisms. Here, we undertake a global analysis of mammalian anelloviruses whose full genome sequences have been determined and have an intact open reading frame 1 (ORF1). We established new criteria for the classification of anelloviruses, and, based on our analyses, we establish new genera and species to accommodate the unclassified anelloviruses. We also note that based on the updated species demarcation criteria, some previously assigned species (n = 10) merge with other species. Given the rate at which virus sequence data are accumulating, and with the identification of diverse anelloviruses, we acknowledge that the taxonomy will have to be dynamic and continuously evolve to accommodate new members.


Asunto(s)
Anelloviridae/clasificación , Mamíferos/virología , Anelloviridae/genética , Animales , Secuencia de Bases , ADN Viral/genética , Bases de Datos Genéticas , Genoma Viral/genética , Sistemas de Lectura Abierta/genética , Filogenia , Terminología como Asunto
19.
Virus Genes ; 57(3): 293-301, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33881682

RESUMEN

Parsley severe stunt-associated virus (PSSaV) is a recently identified nanovirus first reported in Germany. During a survey for identification of nanoviruses infecting apiaceous plants in south-eastern Iran, PSSaV was identified and characterized using a combination of rolling circle amplification (RCA) and high-throughput sequencing. Parsley plant samples were collected from vegetable production farms in Kerman province. From two symptomatic samples (39Ba and 40Ba), seven PSSaV components (DNA-C, -S, -M, -R, -N, -U1 and -U2) with two phylogenetically distinct variants of DNA-R (R1 and R2) were identified. In common with the German isolate of PSSaV, no DNA-U4 component was identified. In addition, associated alphasatellite molecules were identified in samples 39Ba [n = 6] and 40Ba [n = 5]. Sequence analyses showed that concatenated component sequences of the two Iranian PSSaVs share 97.2% nucleotide identity with each other and 82% to the German isolate. The coat proteins (CPs) of the PSSaV Iranian sequences share 97.2% amino acid identity and ~ 84% identity with that of the German isolate. Sequence and phylogenetic analyses of a total of 11 recovered alphasatellites from the two samples can be classified into the genera Fabenesatellite [n = 2], Milvetsatellite [n = 1], Mivedwarsatellite [n = 2], Subclovsatellite [n = 2], Sophoyesatellite [n = 4] in the family Alphasatellitidae. Identification of PSSaV and other nanoviruses in wild and cultivated plants in Iran reveals that nanoviruses could be causing yield reduction in crops plants in this country.


Asunto(s)
Genoma Viral/genética , Petroselinum/virología , Enfermedades de las Plantas/genética , Virus de Plantas/genética , ADN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Irán , Filogenia , Enfermedades de las Plantas/virología , Virus de Plantas/patogenicidad , Virus Satélites/genética
20.
Arch Virol ; 165(5): 1225-1229, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32146505

RESUMEN

Using a high-throughput sequencing approach, we identified four genomoviruses (family Genomoviridae) associated with a sweet orange (Citrus sinensis) plant collected in Tunisia. The ssDNA genomes of these genomoviruses, which were amplified, cloned and Sanger sequenced, range in size from 2156 to 2191 nt. Three of these viruses share > 99% full-genome pairwise sequence identity and are referred to as citrus Tunisia genomovirus 1 (CTNGmV-1). The CTNGmV-1 isolates share < 62% genome-wide pairwise nucleotide sequence identity with other genomoviruses and belong to the genus Gemykolovirus. The genome of the fourth virus, which was called CTNGmV-2, shares < 68% nucleotide sequence identity with other genomoviruses and belongs to the genus Gemycircularvirus. Based on the species demarcation criteria for members of the family Genomoviridae, CTNGmV-1 and -2 would each represent a new species. Although found associated with Citrus sp. plants, it is likely that these viruses infect fungi or other organisms associated with the plants.


Asunto(s)
Citrus/virología , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , Análisis de Secuencia de ADN , Virus ADN/genética , Virus Fúngicos/genética , Filogenia , Virus de Plantas/clasificación , Virus de Plantas/genética , Virus de Plantas/aislamiento & purificación , Homología de Secuencia de Ácido Nucleico , Túnez
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA