Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 47(5): 688-97, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22842495

RESUMEN

Oxidative stress is an important part of host innate immune response to foreign pathogens, such as bacterial LPS, but excessive activation of redox signaling may lead to pathologic endothelial cell (EC) activation and barrier dysfunction. Microtubules (MTs) play an important role in agonist-induced regulation of vascular endothelial permeability, but their impact in modulation of inflammation and EC barrier has not been yet investigated. This study examined the effects of LPS-induced oxidative stress on MT dynamics and the involvement of MTs in the LPS-induced mechanisms of Rho activation, EC permeability, and lung injury. LPS treatment of pulmonary vascular EC induced elevation of reactive oxygen species (ROS) and caused oxidative stress associated with EC hyperpermeability, cytoskeletal remodeling, and formation of paracellular gaps, as well as activation of Rho, p38 stress kinase, and NF-κB signaling, the hallmarks of endothelial barrier dysfunction. LPS also triggered ROS-dependent disassembly of the MT network, leading to activation of MT-dependent signaling. Stabilization of MTs with epothilone B, or inhibition of MT-associated guanine nucleotide exchange factor (GEF)-H1 activity by silencing RNA-mediated knockdown, suppressed LPS-induced EC barrier dysfunction in vitro, and attenuated vascular leak and lung inflammation in vivo. LPS disruptive effects were linked to activation of Rho signaling caused by LPS-induced MT disassembly and release of Rho-specific GEF-H1 from MTs. These studies demonstrate, for the first time, the mechanism of ROS-induced Rho activation via destabilization of MTs and GEF-H1-dependent activation of Rho signaling, leading to pulmonary EC barrier dysfunction and exacerbation of LPS-induced inflammation.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Permeabilidad Capilar , Microtúbulos/metabolismo , Estrés Oxidativo , Acetilcisteína/farmacología , Lesión Pulmonar Aguda/inmunología , Animales , Antioxidantes/farmacología , Células Cultivadas , Impedancia Eléctrica , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Endotelio Vascular/inmunología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Epotilonas/farmacología , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Humanos , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Microtúbulos/efectos de los fármacos , Estabilidad Proteica , Arteria Pulmonar/inmunología , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Interferencia de ARN , Factores de Intercambio de Guanina Nucleótido Rho , Moduladores de Tubulina/farmacología
2.
J Physiol ; 588(Pt 20): 3883-900, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20724366

RESUMEN

Acid-sensing ion channels (ASICs) are proton-gated cation channels that play important roles in the CNS including synaptic plasticity and acidosis-mediated neuronal injury. ASIC1a and ASIC2a subunits are predominant in CNS neurons, where homomultimeric and heteromultimeric channel configurations co-exist. Since ASIC1a and ASIC2a have dramatic differences in pH sensitivity, Ca(2+) permeability and channel kinetics, any change in the level of individual subunits may have significant effects on the properties and functions of ASICs. Using patch-clamp recording, fluorescent Ca(2+) imaging and molecular biological techniques, we show dramatic developmental changes in the properties of ASICs in mouse cortical neurons. For example, the amplitude of ASIC currents increases whereas desensitization decreases with neuronal maturation. Decreased H(+) affinity and acid-evoked [Ca(2+)](i) but increased Zn(2+) potentiation were also recorded in mature neurons. RT-PCR revealed significant increases in the ratio of ASIC2/ASIC1 mRNA with neuronal maturation. Thus, contributions of ASIC1a and ASIC2a to overall ASIC-mediated responses undergo distinct developmental changes. These findings may help in understanding the precise role of ASICs in physiological and pathological conditions at different developmental stages.


Asunto(s)
Corteza Cerebral/fisiología , Potenciales de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Canales de Sodio/fisiología , Canales Iónicos Sensibles al Ácido , Análisis de Varianza , Animales , Calcio/metabolismo , Células Cultivadas , Electrofisiología , Concentración de Iones de Hidrógeno , Ratones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
J Cereb Blood Flow Metab ; 30(6): 1247-60, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20216553

RESUMEN

Acidosis is a common feature of the human brain during ischemic stroke and is known to cause neuronal injury. However, the mechanism underlying acidosis-mediated injury of the human brain remains elusive. We show that a decrease in the extracellular pH evoked inward currents characteristic of acid-sensing ion channels (ASICs) and increased intracellular Ca(2+) in cultured human cortical neurons. Acid-sensing ion channels in human cortical neurons show electrophysiological and pharmacological properties distinct from those in neurons of the rodent brain. Reverse transcriptase-PCR and western blot detected a high level of the ASIC1a subunit with little or no expression of other ASIC subunits. Treatment of human cortical neurons with acidic solution induced substantial cell injury, which was attenuated by the ASIC1a blockade. Thus, functional homomeric ASIC1a channels are predominantly expressed in neurons from the human brain. Activation of these channels has an important role in acidosis-mediated injury of human brain neurons.


Asunto(s)
Acidosis/metabolismo , Corteza Cerebral/metabolismo , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/biosíntesis , Neuronas/metabolismo , Canales de Sodio/biosíntesis , Canales Iónicos Sensibles al Ácido , Adulto , Anciano , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Roedores/metabolismo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA