Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Inorg Chem ; 63(16): 7105-7112, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38591794

RESUMEN

It is well established that solid K2MnF6 reacts with excess SbF5 forming elemental F2. However, if the reaction is carried out in anhydrous HF (aHF) as a solvent, this is surprisingly not the case. Instead, the green Mn(IV) compound K3[(MnIVF)(SbF6)5]F is obtained. The reductive elimination of F2 was not observed under the applied conditions. The compound was characterized by its crystal structure, by Raman spectroscopy, and by quantum-chemical solid-state calculations. It crystallizes in the monoclinic space group P21/c, mP164, with the lattice parameters a = 12.2393(13), b = 12.167(2), c = 20.115(5) Å, ß = 110.805(8)°, V = 2800.1(9) Å3, Z = 4 at T = 200 K. As the use of strictly anhydrous HF is crucial in this and other similar reactions, methods for drying moist HF are discussed.

2.
Chemistry ; 29(49): e202301876, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37522612

RESUMEN

The reaction of Cs[BrF6 ] with BrF5 gave the compound Cs[Br3 F16 ] with the unprecedented propeller-shaped, C3 -symmetric [(µ3 -F)(BrF5 )3 ]- anion. All other currently known fluoridobromates(V) contain only octahedral [BrF6 ]- anions, which, unlike the related [IF6 ]- anions, never exhibited stereochemical activity of the lone pair on the Br atoms. Despite the same coordination number of six for the Br atom in the [BrF6 ]- and [(µ3 -F)(BrF5 )3 ]- anions, the longer µ3 -F-Br bonds provide additional space, allowing the lone pairs on the Br atoms to become stereochemically active. Cs[Br3 F16 ] was characterized by single-crystal X-ray diffraction, Raman spectroscopy, and quantum-chemical calculations for both the solid-state compound and the isolated anion at 0 K. Intrinsic bond orbital calculations show that the µ3 -F-Br bond is essentially ionic in nature and also underpin the stereochemical activity of the lone pairs of the Br(V) atoms.

3.
Chemistry ; 29(30): e202203449, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-36919766

RESUMEN

[Mn3 O(OAc)7 (HOAc)]6 ⋅ x AcOH (x=6-9) represents a rare example of a compound containing molecular Mn18 -rings. These are formed by Mn3 (µ3 -O) subunits in which the high-spin Mn(III) centers are bridged by three pairs of acetate anions (AcO- ). An AcOH molecule coordinates to one of the Mn atoms leading to [Mn3 (µ3 -O)(µ2 -OAc)6 (AcOH)]-units, designated in short as Mn3 -units, that are interconnected by acetate anions via the other two Mn atoms to form Mn18 -rings. Magnetic measurements show weak ferromagnetic interactions between them that are suppressed in strong magnetic field. Quantum-chemical calculations on Mn3 model complexes using independently DFT and ab-initio multi reference methods (CASSCF/NEVPT2) show a correlation between the orientation of the pseudo-Jahn-Teller axes of pairs of Mn(III) magnetic centers and corresponding exchange coupling energies. Weak coupling between Mn3 -units within the Mn18 -ring allowed to simulate the magnetic susceptibility versus temperature dependence in terms of basically uncoupled magnetic moments of each Mn3 -unit within the ring.

4.
Chemistry ; 29(24): e202203983, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36780136

RESUMEN

The reactivity of carbonyl diisocyanate, CO(NCO)2 , and carbonyl diisothiocyanate, CO(NCS)2 with nucleophiles shows different patterns: Whereas carbonyl diisocyanate adds two equivalents of nucleophile forming carbonyl bis(carbamoylhalides), carbonyl diisothiocyanate only adds one equivalent and undergoes intramolecular ring closure, resulting in the formation of substituted thiadiazines. In this study we have reacted both carbonyl diisocyanate and carbonyl diisothiocyanate with the full series of hydrogen halides HF to HI, isolating carbonyl bis(carbamoylfluoride) (1), -chloride (2), -bromide (3), and -iodide (4) as well as (6-chloro-2,3-dihydro-2-thioxo-4H-1,3,5-thiadiazin-4-one (5), and 6-bromo-2,3-dihydro-2-thioxo-4H-1,3,5-thiadiazin-4-one (6). The compounds were analysed by single-crystal X-ray diffraction, NMR spectroscopy, IR and Raman spectroscopy, and elemental analysis. Quantum mechanical calculations show thermodynamic reasons for the differences in reactivity.

5.
Chemphyschem ; 24(9): e202200903, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36688413

RESUMEN

Quantum chemical methods were used to study the molecular structure and anharmonic IR spectra of the experimentally known closed-shell molecular hexafluorides MF6 (M=S, Se, Te, Xe, Mo, W, U). First, the molecular structures and harmonic frequencies were investigated using Density Functional Theory (DFT) with all-electron basis sets and explicitly considering the influence of spin-orbit coupling. Second, anharmonic frequencies and IR intensities were calculated with the CCSD(T) coupled cluster method and compared, where available, with IR spectra recorded by us. These comparisons showed satisfactory results. The anharmonic IR spectra provide means for identifying experimentally too little studied or unknown MF6 molecules with M=Cr, Po, Rn. To the best of our knowledge, we predict the NdF6 molecule for the first time and show it to be a true local minimum on the potential energy surface. We used intrinsic bond orbital (IBO) analyses to characterize the bonding situation in comparison with the UF6 molecule.

6.
Inorg Chem ; 62(33): 13435-13452, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37555652

RESUMEN

The herein-reported oxyfluoridometallate salts were synthesized and structurally characterized during the studies of the Lewis acidity of MOF4 (M = Mo, W) with various fluoride ion donors (RbF, CsF, TlF, AgF, SrF2, BaF2, PbF2) in different solvents (aqHF 48%, aHF, BrF3, ClF3). Phase-pure MoOF4 was either synthesized by hydrolysis of MoF6 with SiO2 in anhydrous HF (aHF) or by reactions of BrF3 with MoO2 or MoO3, respectively. The compound was characterized by infrared and Raman spectroscopy, solid-state quantum-chemical calculations, as well as powder and single-crystal X-ray diffraction. MoOF4 reacted with PbF2 in aHF forming Pb[MoOF5]2, while under comparable conditions, WOF4 formed Pb3[WOF5]4F2, containing the [WOF5]- anion. Salts containing such [MoOF5]- anions were also directly obtained from reactions of BrF3, MoO3, and AF2 (A = Sr, Ba), while with AgF, the compound Ag[Mo2O2F9] was observed. ClF3 reacted with MoO3 to form [ClOF2][Mo3O3F13]. Carrying out similar reactions in aqueous HF (aqHF) in autoclaves under hydrofluorothermal conditions leads to O-richer compounds with the composition A[MoO2F4] (A = Sr, Ba). With RbF or Tl2(CO3), the compounds A[MoO2F3] (A = Rb, Tl) were obtained. With CsF reduction to Mo(V) occurred as Cs2[MoVOF5] was formed. We report on similarities and differences within the respective anions and within the crystal structures of these compounds.

7.
Inorg Chem ; 62(40): 16263-16273, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37728560

RESUMEN

Starting from the respective metal M, we have synthesized the hexafluorides MF6 of M = Ru, Rh, and Pt by the use of a laser-based heating system and a remote fluorine plasma source using a mixture of Ar and NF3 as the feed gas. The formation of the hexafluorides was confirmed by several different spectroscopic methods, including IR, Raman, UV/vis, and NMR spectroscopy. In addition, we present first experimental hints that RuF6 is more reactive than PtF6, because RuF6 is able to oxidize lower fluorides of platinum to PtF6.

8.
Angew Chem Int Ed Engl ; 62(39): e202307218, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37438320

RESUMEN

The purely chemical synthesis of fluorine is a spectacular reaction which for more than a century had been believed to be impossible. In 1986, it was finally experimentally achieved, but since then this important reaction has not been further studied and its detailed mechanism had been a mystery. The known thermal stability of MnF4 casts serious doubts on the originally proposed hypothesis that MnF4 is thermodynamically unstable and decomposes spontaneously to a lower manganese fluoride and F2 . This apparent discrepancy has now been resolved experimentally and by electronic structure calculations. It is shown that the reductive elimination of F2 requires a large excess of SbF5 and occurs in the last reaction step when in the intermediate [SbF6 ][MnF2 ][Sb2 F11 ] the addition of one more SbF5 molecule to the [SbF6 ]- anion generates a second tridentate [Sb2 F11 ]- anion. The two tridentate [Sb2 F11 ]- anions then provide six fluorine bridges to the Mn atom thereby facilitating the reductive elimination of the two fluorine ligands as F2 .

9.
Chemistry ; 28(72): e202202466, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36106827

RESUMEN

BrF5 can be prepared by treating BrF3 with fluorine under UV light in the region of 300 to 400 nm at room temperature. It was analyzed by UV-Vis, NMR, IR and Raman spectroscopy. Its crystal structure was redetermined by X-ray diffraction, and its space group was corrected to Pnma. Quantum-chemical calculations were performed for the band assignment of the vibrational spectra. A monoclinic polymorph of BrF5 was quantum chemically predicted and then observed as its low-temperature modification in space group P21 /c by single crystal X-ray diffraction. BrF5 reacts with the alkali metal fluorides AF (A=K, Rb) to form alkali metal hexafluoridobromates(V), A[BrF6 ] the crystal structures of which have been determined. Both compounds crystallize in the K[AsF6 ] structure type (R 3 ‾ ${\bar 3}$ , no. 148, hR24). For the species [BrF6 ]+ , BrF5 , [BrF6 ]- , and [IF6 ]- , the chemical bonds and lone pairs on the heavy atoms were investigated by means of intrinsic bond orbital analysis.

10.
Chemistry ; 27(7): 2381-2392, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32897578

RESUMEN

A photochemical route to salts consisting of difluorooxychloronium(V) cations, [ClOF2 ]+ , and hexafluorido(non)metallate(V) anions, [MF6 ]- (M=V, Nb, Ta, Ru, Os, Ir, P, Sb) is presented. As starting materials, either metals, oxygen and ClF3 or oxides and ClF3 are used. The prepared compounds were characterized by single-crystal X-ray diffraction and Raman spectroscopy. The crystal structures of [ClOF2 ][MF6 ] (M=V, Ru, Os, Ir, P, Sb) are layer structures that are isotypic with the previously reported compound [ClOF2 ][AsF6 ], whereas for M=Nb and Ta, similar crystal structures with a different stacking variant of the layers are observed. Additionally, partial or full O/F disorder within the [ClOF2 ]+ cations of the Nb and Ta compounds occurs. In all compounds reported here, a trigonal pyramidal [ClOF2 ]+ cation with three additional Cl⋅⋅⋅F contacts to neighboring [MF6 ]- anions is observed, resulting in a pseudo-octahedral coordination sphere around the Cl atom. The Cl-F and Cl-O bond lengths of the [ClOF2 ]+ cations seem to correlate with the effective ionic radii of the MV ions. Quantum-chemical, solid-state calculations well reproduce the experimental Raman spectra and show, as do quantum-chemical gas phase calculations, that the secondary Cl⋅⋅⋅F interactions are ionic in nature. However, both solid-state and gas-phase quantum-chemical calculations fail to reproduce the increases in the Cl-O bond lengths with increasing effective ionic radius of M in [MF6 ]- and the Cl-O Raman shifts also do not generally follow this trend.

11.
Chemistry ; 27(38): 9801-9813, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-33830547

RESUMEN

As a consequence of the static Jahn-Teller effect of the 5 E ground state of MnIII in cubic structures with octahedral parent geometries, their octahedral coordination spheres become distorted. In the case of six fluorido ligands, [MnF6 ]3- anions with two longer and four shorter Mn-F bonds making elongated octahedra are usually observed. Herein, we report the synthesis of the compound K3 [MnF6 ] through a high-temperature approach and its crystallization by a high-pressure/high-temperature route. The main structural motifs are two quasi-isolated, octahedron-like [MnF6 ]3- anions of quite different nature compared to that met in ideal octahedral MnIII Jahn-Teller systems. Owing to the internal electric field of Ci symmetry dominated by the next-neighbour K+ ions acting on the MnIII sites, both sites, the pseudo-rhombic (site 1) and the pseudo-tetragonally elongated (site 2) [MnF6 ]3- anions are present in K3 [MnF6 ]. The compound was characterized by single-crystal and powder X-ray diffraction, and magnetometry as well as by FTIR, Raman, and ligand field spectroscopy. A theoretical interpretation of the electronic structure and molecular geometry of the two Mn sites in the lattice is given by using a vibronic coupling model with parameters adjusted from multireference ab-initio cluster calculations.

12.
Inorg Chem ; 60(19): 15031-15040, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34529426

RESUMEN

We investigated whether [SiF4(NH3)2] can act as a fluoride-ion acceptor in its reactions with the fluorides AF (A = Li-Cs, Tl, NH4) in anhydrous liquid ammonia (NH3). While LiF and NaF did not react, we obtained the compounds K[SiF5(NH3)], Rb[SiF5(NH3)], and Cs[SiF5(NH3)], as well as [NH4(NH3)2]2[SiF6] and [Tl2(NH3)6][SiF6]·2NH3, from the other starting materials and characterized them by either single-crystal or powder X-ray diffraction. The compound [NH4(NH3)2]2[SiF6] contains the very rarely observed hydrogen-bonded, C2v-symmetric diammine ammonium cation [NH4(NH3)2]+, and the compound [Tl2(NH3)6][SiF6]·2NH3 is an example for an uncommon Tl(I)-Tl(I) interaction. This "thallophilic" interaction was investigated with quantum-chemical methods.

13.
Inorg Chem ; 60(21): 16686-16699, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34662514

RESUMEN

UIr has been discussed as a rare example of a noncentrosymmetric, ferromagnetic superconductor crystallizing in the acentric PdBi structure type (P21, mP16). Here we present a new structure model for UIr. By means of single-crystal and powder X-ray diffraction we find UIr to crystallize in the centrosymmetric space group P21/c, in line with previous ab initio calculations. The discrepancy with the previous noncentrosymmetric model in space group P21 is explained by the occurrence of twinning. The observed twinning hints toward a high-temperature displacive phase transition of UIr to the CrB structure type (Cmcm, oS8): we discuss the lattice dynamics corresponding to this transition by crystallographic symmetry mode analysis and by density functional theory (DFT). We find that spin-orbit coupling is essential to understand this phase transition. We apply our theoretical considerations for a critical judgment of the structure models of UPt and NpIr that have been reported to crystallize isotypically with UIr. We confirm that UPt is isotypic to UIr (P21/c), whereas we predict NpIr to crystallize in the CrB structure type. Our report on the centrosymmetric crystal structure of UIr has an effect on all those theoretical models that investigated potentially novel superconducting coupling mechanisms of this compound on the basis of the noncentrosymmetric structure model.

14.
Inorg Chem ; 60(17): 12651-12663, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34431300

RESUMEN

We obtained single crystals of the binary mixed-valent fluorides Mn2F5 and Mn3F8 using a high-pressure/high-temperature approach. Mn2F5 crystallizes isotypic to CaCrF5 in the monoclinic space group C2/c (No. 15), with a = 8.7078(8) Å, b = 6.1473(6) Å, c = 7.7817(7) Å, ß = 117.41(1)°, V = 369.80(6) Å3, Z = 4, and mC28 at T = 173 K. Mn3F8 crystallizes in the monoclinic space group P21 (No. 4) with a = 5.5253(2) Å, b = 4.8786(2) Å, c = 9.9124(4) Å, ß = 92.608(2)°, V = 266.92(2) Å3, Z = 2, and mP22 at T = 183 K and presents a new structure type. Crystal-chemical reasoning, CHARDI calculations, and quantum-chemical calculations allowed for the assignment of the oxidation states of the Mn atoms. In both bulk compounds, MnF2 was present as an impurity, as evidenced by powder X-ray diffraction and IR and Raman spectroscopy.

15.
Proc Natl Acad Sci U S A ; 115(6): E1259-E1268, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29358409

RESUMEN

Motility is a central feature of many microorganisms and provides an efficient strategy to respond to environmental changes. Bacteria and archaea have developed fundamentally different rotary motors enabling their motility, termed flagellum and archaellum, respectively. Bacterial motility along chemical gradients, called chemotaxis, critically relies on the response regulator CheY, which, when phosphorylated, inverses the rotational direction of the flagellum via a switch complex at the base of the motor. The structural difference between archaellum and flagellum and the presence of functional CheY in archaea raises the question of how the CheY protein changed to allow communication with the archaeal motility machinery. Here we show that archaeal CheY shares the overall structure and mechanism of magnesium-dependent phosphorylation with its bacterial counterpart. However, bacterial and archaeal CheY differ in the electrostatic potential of the helix α4. The helix α4 is important in bacteria for interaction with the flagellar switch complex, a structure that is absent in archaea. We demonstrated that phosphorylation-dependent activation, and conserved residues in the archaeal CheY helix α4, are important for interaction with the archaeal-specific adaptor protein CheF. This forms a bridge between the chemotaxis system and the archaeal motility machinery. Conclusively, archaeal CheY proteins conserved the central mechanistic features between bacteria and archaea, but differ in the helix α4 to allow binding to an archaellum-specific interaction partner.


Asunto(s)
Archaea/fisiología , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Quimiotaxis/fisiología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Homología de Secuencia
16.
Chemphyschem ; 21(8): 802-808, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-31919990

RESUMEN

Solid gold(I) fluoride remains as an unsynthesized and uncharacterized compound. We have performed a search for potential gold(I) fluoride crystal structures using USPEX evolutionary algorithm and dispersion-corrected hybrid density functional methods. Over 4000 AuF crystal structures have been investigated. Behavior of the AuF crystal structures under pressure was studied up to 25 GPa, and we also evaluated the thermodynamic stability of the hypothetical AuF crystal structures with respect to AuF3 , AuF5 , and Au3 F8 . Mixed-valence compound Au3 [AuF4 ] with Au atoms in various formal oxidation states emerged as the thermodynamically most stable AuF species.

17.
Angew Chem Int Ed Engl ; 59(22): 8527-8531, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32119164

RESUMEN

The 3d-metal mediated nitrene transfer is under intense scrutiny due to its potential as an atom economic and ecologically benign way for the directed amination of (un)functionalised C-H bonds. Here we present the isolation and characterisation of a rare, trigonal imido cobalt(III) complex, which bears a rather long cobalt-imido bond. It can cleanly cleave strong C-H bonds with a bond dissociation energy of up to 92 kcal mol-1 in an intermolecular fashion, unprecedented for imido cobalt complexes. This resulted in the amido cobalt(II) complex [Co(hmds)2 (NHt Bu)]- . Kinetic studies on this reaction revealed an H atom transfer mechanism. Remarkably, the cobalt(II) amide itself is capable of mediating H atom abstraction or stepwise proton/electron transfer depending on the substrate. A cobalt-mediated catalytic application for substrate dehydrogenation using an organo azide is presented.

18.
Angew Chem Int Ed Engl ; 59(41): 18116-18119, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32608053

RESUMEN

Reaction of CsF with ClF3 leads to Cs[Cl3 F10 ]. It contains a molecular, propeller-shaped [Cl3 F10 ]- anion with a central µ3 -F atom and three T-shaped ClF3 molecules coordinated to it. This anion represents the first example of a heteropolyhalide anion of higher ClF3 content than [ClF4 ]- and is the first Cl-containing interhalogen species with a µ-bridging F atom. The chemical bonds to the central µ3 -F atom are highly ionic and quite weak as the bond lengths within the coordinating XF3 units (X = Cl, and also calculated for Br, I) are almost unchanged in comparison to free XF3 molecules. Cs[Cl3 F10 ] crystallizes in a very rarely observed A[5] B[5] structure type, where cations and anions are each pseudohexagonally close packed, and reside, each with coordination number five, in the trigonal bipyramidal voids of the other.

19.
Chemistry ; 25(49): 11528-11537, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31290174

RESUMEN

Despite numerous experimental studies since 1824, the binary copper(I) fluoride remains unknown. A crystal structure prediction has been carried out for CuF using the USPEX evolutionary algorithm and a dispersion-corrected hybrid density functional method. In total about 5000 hypothetical structures were investigated. The energetics of the predicted structures were also counter-checked with local second-order Møller-Plesset perturbation theory. Herein 39 new hypothetical copper(I) fluoride structures are reported that are lower in energy compared to the previously predicted cinnabar-type structure. Cuprophilic Cu-Cu interactions are present in all the low-energy structures, leading to ordered Cu substructures such as helical or zig-zag-type Cu-Cu motifs. The lowest-energy structure adopts a trigonal crystal structure with space group P31 21. From an electronic point of view, the predicted CuF modification is a semiconductor with an indirect band gap of 2.3 eV.

20.
Chemistry ; 25(22): 5793-5802, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30740806

RESUMEN

[Br3 ][SbF6 ] and [Br3 ][IrF6 ] were synthesized by interaction of BrF3 with Sb2 O3 or iridium metal, respectively. The former compound crystallizes in the orthorhombic space group Pbcn (No. 60) with a=11.9269(7), b=11.5370(7), c=12.0640(6) Å, V=1660.01(16) Å3 , Z=8 at 100 K. The latter compound crystallizes in the triclinic space group P 1 ‾ (No. 2) with a=5.4686(5), b=7.6861(8), c=9.9830(9) Å, α=85.320(8), ß=82.060(7), γ=78.466(7)°, V=406.56(7) Å3 , Z=2 at 100 K. Both compounds contain the cation [Br3 ]+ , which has a bent structure and is coordinated by octahedron-like anions [MF6 ]- (M=Sb, Ir). Experimentally obtained cell parameters, bond lengths, and angles are confirmed by solid-state DFT calculations, which differ from the experimental values by less than 2 %. Relativistic effects on the structure of the tribromonium(1+) cation are studied computationally and found to be small. For the heaviest analogues containing At and Ts, however, pronounced relativistic effects are found, which lead to a linear structure of the polyhalogen cation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA