Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(26): e2402200121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38885384

RESUMEN

Advancing our understanding of brain function and developing treatments for neurological diseases hinge on the ability to modulate neuronal groups in specific brain areas without invasive techniques. Here, we introduce Airy-beam holographic sonogenetics (AhSonogenetics) as an implant-free, cell type-specific, spatially precise, and flexible neuromodulation approach in freely moving mice. AhSonogenetics utilizes wearable ultrasound devices manufactured using 3D-printed Airy-beam holographic metasurfaces. These devices are designed to manipulate neurons genetically engineered to express ultrasound-sensitive ion channels, enabling precise modulation of specific neuronal populations. By dynamically steering the focus of Airy beams through ultrasound frequency tuning, AhSonogenetics is capable of modulating neuronal populations within specific subregions of the striatum. One notable feature of AhSonogenetics is its ability to flexibly stimulate either the left or right striatum in a single mouse. This flexibility is achieved by simply switching the acoustic metasurface in the wearable ultrasound device, eliminating the need for multiple implants or interventions. AhSonogentocs also integrates seamlessly with in vivo calcium recording via fiber photometry, showcasing its compatibility with optical modalities without cross talk. Moreover, AhSonogenetics can generate double foci for bilateral stimulation and alleviate motor deficits in Parkinson's disease mice. This advancement is significant since many neurological disorders, including Parkinson's disease, involve dysfunction in multiple brain regions. By enabling precise and flexible cell type-specific neuromodulation without invasive procedures, AhSonogenetics provides a powerful tool for investigating intact neural circuits and offers promising interventions for neurological disorders.


Asunto(s)
Holografía , Neuronas , Animales , Holografía/métodos , Ratones , Neuronas/fisiología , Dispositivos Electrónicos Vestibles , Ondas Ultrasónicas , Cuerpo Estriado/fisiología , Encéfalo/fisiología
2.
Addict Biol ; 28(1): e13253, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36577735

RESUMEN

Use of prescription opioids, particularly oxycodone, is an initiating factor driving the current opioid epidemic. There are several challenges with modelling oxycodone abuse. First, prescription opioids including oxycodone are orally self-administered and have different pharmacokinetics and dynamics than morphine or fentanyl, which have been more commonly used in rodent research. This oral route of administration determines the pharmacokinetic profile, which then influences the establishment of drug-reinforcement associations in animals. Moreover, the pattern of intake and the environment in which addictive drugs are self-administered are critical determinants of the levels of drug intake, of behavioural sensitization and of propensity to relapse behaviour. These are all important considerations when modelling prescription opioid use, which is characterized by continuous drug access in familiar environments. Thus, to model features of prescription opioid use and the transition to abuse, we designed an oral, homecage-based oxycodone self-administration paradigm. Mice voluntarily self-administer oxycodone in this paradigm without any taste modification such as sweeteners, and the majority exhibit preference for oxycodone, escalation of intake, physical signs of dependence and reinstatement of seeking after withdrawal. In addition, a subset of animals demonstrate drug taking that is resistant to aversive consequences. This model is therefore translationally relevant and useful for studying the neurobiological substrates of prescription opioid abuse.


Asunto(s)
Trastornos Relacionados con Opioides , Oxicodona , Masculino , Ratones , Femenino , Animales , Analgésicos Opioides/uso terapéutico , Trastornos Relacionados con Opioides/tratamiento farmacológico , Fentanilo , Refuerzo en Psicología
3.
J Neurosci ; 40(25): 4858-4880, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32424020

RESUMEN

Heightened aggression can be serious concerns for the individual and society at large and are symptoms of many psychiatric illnesses, such as post-traumatic stress disorder. The circuit and synaptic mechanisms underlying experience-induced aggression increase, however, are poorly understood. Here we find that prior attack experience leading to an increase in aggressive behavior, known as aggression priming, activates neurons within the posterior ventral segment of the medial amygdala (MeApv). Optogenetic stimulation of MeApv using a synaptic depression protocol suppresses aggression priming, whereas high-frequency stimulation enhances aggression, mimicking attack experience. Interrogation of the underlying neural circuitry revealed that the MeApv mediates aggression priming via synaptic connections with the ventromedial hypothalamus (VmH) and bed nucleus of the stria terminalis (BNST). These pathways undergo NMDAR-dependent synaptic potentiation after attack. Furthermore, we find that the MeApv-VmH synapses selectively control attack duration, whereas the MeApv-BNST synapses modulate attack frequency, both with no effect on social behavior. Synaptic potentiation of the MeApv-VmH and MeApv-BNST pathways contributes to increased aggression induced by traumatic stress, and weakening synaptic transmission at these synapses blocks the effect of traumatic stress on aggression. These results reveal a circuit and synaptic basis for aggression modulation by experience that can be potentially leveraged toward clinical interventions.SIGNIFICANCE STATEMENT Heightened aggression can have devastating social consequences and may be associated with psychiatric disorders, such as post-traumatic stress disorder. The circuit and synaptic mechanisms underlying experience-induced aggression escalation, however, are poorly understood. Here we identify two aggression pathways between the posterior ventral segment of the medial amygdala and its downstream synaptic partners, the ventromedial hypothalamus and bed nucleus of the stria terminalis that undergo synaptic potentiation after attack and traumatic stress to enhance aggression. Notably, weakening synaptic transmission in these circuits blocks aggression priming, naturally occurring aggression, and traumatic stress-induced aggression increase. These results illustrate a circuit and synaptic basis of aggression modulation by experience, which can be potentially targeted for clinical interventions.


Asunto(s)
Agresión/fisiología , Complejo Nuclear Corticomedial/fisiología , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Transmisión Sináptica/fisiología , Animales , Masculino , Ratones Endogámicos C57BL , Distrés Psicológico
4.
J Neurosci ; 40(8): 1679-1688, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31953369

RESUMEN

The striatum is critical for controlling motor output. However, it remains unclear how striatal output neurons encode and facilitate movement. A prominent theory suggests that striatal units encode movements in bursts of activity near specific events, such as the start or end of actions. These bursts are theorized to gate or permit specific motor actions, thereby encoding and facilitating complex sequences of actions. An alternative theory has suggested that striatal neurons encode continuous changes in sensory or motor information with graded changes in firing rate. Supporting this theory, many striatal neurons exhibit such graded changes without bursting near specific actions. Here, we evaluated these two theories in the same recordings of mice (both male and female). We recorded single-unit and multiunit activity from the dorsomedial striatum of mice as they spontaneously explored an arena. We observed both types of encoding, although continuous encoding was more prevalent than bursting near movement initiation or termination. The majority of recorded units did not exhibit positive linear relationships with speed but instead exhibited nonlinear relationships that peaked at a range of locomotor speeds. Bulk calcium recordings of identified direct and indirect pathway neurons revealed similar speed tuning profiles, indicating that the heterogeneity in response profiles was not due to this genetic distinction. We conclude that continuous encoding of speed is a central component of movement encoding in the striatum.SIGNIFICANCE STATEMENT The striatum is a structure that is linked to volitional movements and is a primary site of pathology in movement disorders. It remains unclear how striatal neurons encode motor parameters and use them to facilitate movement. Here, we evaluated two models for this: a "discrete encoding model" in which striatal neurons facilitate movements with brief burst of activity near the start and end of movements, and a "continuous encoding model," in which striatal neurons encode the sensory or motor state of the animal with continuous changes in firing. We found evidence primarily in support of the continuous encoding model. This may have implications for understanding the striatal control of movement, as well as informing therapeutic approaches for treating movement disorders.


Asunto(s)
Cuerpo Estriado/fisiología , Conducta Exploratoria/fisiología , Movimiento/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología , Animales , Femenino , Masculino , Ratones
5.
Mol Psychiatry ; 25(2): 506, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31366917

RESUMEN

A correction to this paper has been published and can be accessed via a link at the top of the paper.

6.
Mol Psychiatry ; 25(2): 491-505, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-29695836

RESUMEN

The dorsal striatum has been linked to decision-making under conflict, but the mechanism by which striatal neurons contribute to approach-avoidance conflicts remains unclear. We hypothesized that striatopallidal dopamine D2 receptor (D2R)-expressing neurons promote avoidance, and tested this hypothesis in two exploratory approach-avoidance conflict paradigms in mice: the elevated zero maze and open field. Genetic elimination of D2Rs on striatopallidal neurons (iMSNs), but not other neural populations, increased avoidance of the open areas in both tasks, in a manner that was dissociable from global changes in movement. Population calcium activity of dorsomedial iMSNs was disrupted in mice lacking D2Rs on iMSNs, suggesting that disrupted output of iMSNs contributes to heightened avoidance behavior. Consistently, artificial disruption of iMSN output with optogenetic stimulation heightened avoidance of open areas of these tasks, while inhibition of iMSN output reduced avoidance. We conclude that dorsomedial striatal iMSNs control approach-avoidance conflicts in exploratory tasks, and highlight this neural population as a potential target for reducing avoidance in anxiety disorders.


Asunto(s)
Reacción de Prevención/fisiología , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Animales , Trastornos de Ansiedad , Encéfalo/metabolismo , Línea Celular , Femenino , Sustancia Gris/metabolismo , Hábitos , Inhibición Psicológica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Optogenética/métodos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Trastorno de Movimiento Estereotipado
7.
J Neurosci ; 38(14): 3547-3558, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29523623

RESUMEN

The striatum controls food-related actions and consumption and is linked to feeding disorders, including obesity and anorexia nervosa. Two populations of neurons project from the striatum: direct pathway medium spiny neurons and indirect pathway medium spiny neurons. The selective contribution of direct pathway medium spiny neurons and indirect pathway medium spiny neurons to food-related actions and consumption remains unknown. Here, we used in vivo electrophysiology and fiber photometry in mice (of both sexes) to record both spiking activity and pathway-specific calcium activity of dorsal striatal neurons during approach to and consumption of food pellets. While electrophysiology revealed complex task-related dynamics across neurons, population calcium was enhanced during approach and inhibited during consumption in both pathways. We also observed ramping changes in activity that preceded both pellet-directed actions and spontaneous movements. These signals were heterogeneous in the spiking units, with neurons exhibiting either increasing or decreasing ramps. In contrast, the population calcium signals were homogeneous, with both pathways having increasing ramps of activity for several seconds before actions were initiated. An analysis comparing population firing rates to population calcium signals also revealed stronger ramping dynamics in the calcium signals than in the spiking data. In a second experiment, we trained the mice to perform an action sequence to evaluate when the ramping signals terminated. We found that the ramping signals terminated at the beginning of the action sequence, suggesting they may reflect upcoming actions and not preconsumption activity. Plasticity of such mechanisms may underlie disorders that alter action selection, such as drug addiction or obesity.SIGNIFICANCE STATEMENT Alterations in striatal function have been linked to pathological consumption in disorders, such as obesity and drug addiction. We recorded spiking and population calcium activity from the dorsal striatum during ad libitum feeding and an operant task that resulted in mice obtaining food pellets. Dorsal striatal neurons exhibited long ramps in activity that preceded actions by several seconds, and may reflect upcoming actions. Understanding how the striatum controls the preparation and generation of actions may lead to improved therapies for disorders, such as drug addiction or obesity.


Asunto(s)
Cuerpo Estriado/fisiología , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Animales , Calcio/metabolismo , Cuerpo Estriado/citología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Movimiento , Neuronas/metabolismo , Neuronas/fisiología , Recompensa
8.
Nature ; 466(7306): 622-6, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20613723

RESUMEN

Neural circuits of the basal ganglia are critical for motor planning and action selection. Two parallel basal ganglia pathways have been described, and have been proposed to exert opposing influences on motor function. According to this classical model, activation of the 'direct' pathway facilitates movement and activation of the 'indirect' pathway inhibits movement. However, more recent anatomical and functional evidence has called into question the validity of this hypothesis. Because this model has never been empirically tested, the specific function of these circuits in behaving animals remains unknown. Here we report direct activation of basal ganglia circuitry in vivo, using optogenetic control of direct- and indirect-pathway medium spiny projection neurons (MSNs), achieved through Cre-dependent viral expression of channelrhodopsin-2 in the striatum of bacterial artificial chromosome transgenic mice expressing Cre recombinase under control of regulatory elements for the dopamine D1 or D2 receptor. Bilateral excitation of indirect-pathway MSNs elicited a parkinsonian state, distinguished by increased freezing, bradykinesia and decreased locomotor initiations. In contrast, activation of direct-pathway MSNs reduced freezing and increased locomotion. In a mouse model of Parkinson's disease, direct-pathway activation completely rescued deficits in freezing, bradykinesia and locomotor initiation. Taken together, our findings establish a critical role for basal ganglia circuitry in the bidirectional regulation of motor behaviour and indicate that modulation of direct-pathway circuitry may represent an effective therapeutic strategy for ameliorating parkinsonian motor deficits.


Asunto(s)
Ganglios Basales/citología , Ganglios Basales/fisiopatología , Modelos Neurológicos , Vías Nerviosas/fisiopatología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Animales , Ganglios Basales/patología , Ganglios Basales/fisiología , Channelrhodopsins , Cromosomas Artificiales Bacterianos/genética , Modelos Animales de Enfermedad , Marcha , Hipocinesia/complicaciones , Hipocinesia/genética , Hipocinesia/fisiopatología , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Actividad Motora/fisiología , Neostriado/citología , Neostriado/patología , Neostriado/fisiología , Neostriado/fisiopatología , Vías Nerviosas/citología , Vías Nerviosas/patología , Vías Nerviosas/fisiología , Neuronas/citología , Neuronas/patología , Neuronas/fisiología , Oxidopamina , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Desempeño Psicomotor , Receptores Dopaminérgicos/genética
9.
Behav Res Methods ; 48(2): 503-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26019006

RESUMEN

The operant conditioning chamber is a cornerstone of animal behavioral research. Operant boxes are used to assess learning and motivational behavior in animals, particularly for food and drug reinforcers. However, commercial operant chambers cost several thousands of dollars. We have constructed the Rodent Operant Bucket (ROBucket), an inexpensive and easily assembled open-source operant chamber based on the Arduino microcontroller platform, which can be used to train mice to respond for sucrose solution or other liquid reinforcers. The apparatus contains two nose pokes, a drinking well, and a solenoid-controlled liquid delivery system. ROBucket can run fixed ratio and progressive ratio training schedules, and can be programmed to run more complicated behavioral paradigms. Additional features such as motion sensing and video tracking can be added to the operant chamber through the array of widely available Arduino-compatible sensors. The design files and programming code are open source and available online for others to use.


Asunto(s)
Investigación Conductal/instrumentación , Condicionamiento Operante , Animales , Masculino , Ratones , Esquema de Refuerzo
10.
J Neurosci ; 33(47): 18531-9, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24259575

RESUMEN

The direct and indirect efferent pathways from striatum ultimately reconverge to influence basal ganglia output nuclei, which in turn regulate behavior via thalamocortical and brainstem motor circuits. However, the distinct contributions of these two efferent pathways in shaping basal ganglia output are not well understood. We investigated these processes using selective optogenetic control of the direct and indirect pathways, in combination with single-unit recording in the basal ganglia output nucleus substantia nigra pars reticulata (SNr) in mice. Optogenetic activation of striatal direct and indirect pathway projection neurons produced diverse cellular responses in SNr neurons, with stimulation of each pathway eliciting both excitations and inhibitions. Despite this response heterogeneity, the effectiveness of direct pathway stimulation in producing movement initiation correlated selectively with the subpopulation of inhibited SNr neurons. In contrast, effective indirect pathway-mediated motor suppression was most strongly influenced by excited SNr neurons. Our results support the theory that key basal ganglia output neurons serve as an inhibitory gate over motor output that can be opened or closed by striatal direct and indirect pathways, respectively.


Asunto(s)
Ganglios Basales/citología , Locomoción/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Channelrhodopsins , Estimulación Eléctrica , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/fisiología , Optogenética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores de Adenosina A2/genética , Receptores de Dopamina D1/genética , Sustancia Negra/citología
11.
Neurobiol Learn Mem ; 113: 69-81, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24231425

RESUMEN

The neural circuitry mediating fear extinction has been increasingly well studied and delineated. The rodent infralimbic subregion (IL) of the ventromedial prefrontal cortex (vmPFC) has been found to promote extinction, whereas the prelimbic cortex (PL) demonstrates an opposing, pro-fear, function. Studies employing in vivo electrophysiological recordings have observed that while increased IL single-unit firing and bursting predicts robust extinction retrieval, increased PL firing can correlate with sustained fear and poor extinction. These relationships between single-unit firing and extinction do not hold under all experimental conditions, however. In the current study, we further investigated the relationship between vmPFC and PL single-unit firing and extinction using inbred mouse models of intact (C57BL/6J, B6) and deficient (129S1/SvImJ, S1) extinction strains. Simultaneous single-unit recordings were made in the PL and vmPFC (encompassing IL) as B6 and S1 mice performed extinction training and retrieval. Impaired extinction retrieval in S1 mice was associated with elevated PL single-unit firing, as compared to firing in extinguishing B6 mice, consistent with the hypothesized pro-fear contribution of PL. Analysis of local field potentials also revealed significantly higher gamma power in the PL of S1 than B6 mice during extinction training and retrieval. In the vmPFC, impaired extinction in S1 mice was also associated with exaggerated single-unit firing, relative to B6 mice. This is in apparent contradiction to evidence that IL activity promotes extinction, but could reflect a (failed) compensatory effort by the vmPFC to mitigate fear-promoting activity in other regions, such as the PL or amygdala. In support of this hypothesis, augmenting IL activity via direct infusion of the GABAA receptor antagonist picrotoxin rescued impaired extinction retrieval in S1 mice. Chronic fluoxetine treatment produced modest reductions in fear during extinction retrieval and increased the number of Zif268-labeled cells in layer II of IL, but failed to increase vmPFC single-unit firing. Collectively, these findings further support the important contribution these cortical regions play in determining the balance between robust extinction on the one hand, and sustained fear on the other. Elucidating the precise nature of these roles could help inform understanding of the pathophysiology of fear-related anxiety disorders.


Asunto(s)
Extinción Psicológica/fisiología , Miedo/fisiología , Fluoxetina/farmacología , Antagonistas del GABA/farmacología , Picrotoxina/farmacología , Corteza Prefrontal/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Fluoxetina/administración & dosificación , Antagonistas del GABA/administración & dosificación , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp/métodos , Picrotoxina/administración & dosificación , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiopatología , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación
12.
Elife ; 122024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829200

RESUMEN

Threat-response neural circuits are conserved across species and play roles in normal behavior and psychiatric diseases. Maladaptive changes in these neural circuits contribute to stress, mood, and anxiety disorders. Active coping in response to stressors is a psychosocial factor associated with resilience against stress-induced mood and anxiety disorders. The neural circuitry underlying active coping is poorly understood, but the functioning of these circuits could be key for overcoming anxiety and related disorders. The supramammillary nucleus (SuM) has been suggested to be engaged by threat. SuM has many projections and a poorly understood diversity of neural populations. In studies using mice, we identified a unique population of glutamatergic SuM neurons (SuMVGLUT2+::POA) based on projection to the preoptic area of the hypothalamus (POA) and found SuMVGLUT2+::POA neurons have extensive arborizations. SuMVGLUT2+::POA neurons project to brain areas that mediate features of the stress and threat responses including the paraventricular nucleus thalamus (PVT), periaqueductal gray (PAG), and habenula (Hb). Thus, SuMVGLUT2+::POA neurons are positioned as a hub, connecting to areas implicated in regulating stress responses. Here we report SuMVGLUT2+::POA neurons are recruited by diverse threatening stressors, and recruitment correlated with active coping behaviors. We found that selective photoactivation of the SuMVGLUT2+::POA population drove aversion but not anxiety like behaviors. Activation of SuMVGLUT2+::POA neurons in the absence of acute stressors evoked active coping like behaviors and drove instrumental behavior. Also, activation of SuMVGLUT2+::POA neurons was sufficient to convert passive coping strategies to active behaviors during acute stress. In contrast, we found activation of GABAergic (VGAT+) SuM neurons (SuMVGAT+) neurons did not alter drive aversion or active coping, but termination of photostimulation was followed by increased mobility in the forced swim test. These findings establish a new node in stress response circuitry that has projections to many brain areas and evokes flexible active coping behaviors.


Asunto(s)
Adaptación Psicológica , Neuronas , Estrés Psicológico , Animales , Neuronas/fisiología , Neuronas/metabolismo , Ratones , Adaptación Psicológica/fisiología , Masculino , Ácido Glutámico/metabolismo , Hipotálamo Posterior/fisiología , Vías Nerviosas/fisiología , Ratones Endogámicos C57BL
13.
Physiology (Bethesda) ; 27(3): 167-77, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22689792

RESUMEN

Direct and indirect pathway striatal neurons are known to exert opposing control over motor output. In this review, we discuss a hypothetical extension of this framework, in which direct pathway striatal neurons also mediate reinforcement and reward, and indirect pathway neurons mediate punishment and aversion.


Asunto(s)
Cuerpo Estriado/fisiología , Movimiento/fisiología , Castigo , Refuerzo en Psicología , Animales , Corteza Cerebral/fisiología , Humanos , Neuronas/fisiología
14.
Cell Rep Methods ; 3(3): 100439, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-37056372

RESUMEN

In this issue of Cell Reports Methods, Formozov et al. present an innovative fiber photometry system that uses a fused fiber coupler (FFC) instead of a dichroic mirror to split the excitation and emission light. The FFC-based photometry system is highly flexible and can be easily reconfigured to record from different biosensors.


Asunto(s)
Técnicas Biosensibles , Optogenética , Fibras Ópticas , Fotometría
15.
iScience ; 26(7): 107241, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37485355

RESUMEN

Opioid receptors, including the kappa opioid receptor (KOR), exert control over thermoregulation and feeding behavior. Notably, activation of KOR stimulates food intake, leading to postulation that KOR signaling plays a central role in managing energy intake. KOR has also been proposed as a target for treating obesity. Herein, we report studies examining how roles for KOR signaling in regulating thermogenesis, feeding, and energy balance may be interrelated using pharmacological interventions, genetic tools, quantitative thermal imaging, and metabolic profiling. Our findings demonstrate that activation of KOR in the central nervous system causes increased energy expenditure via brown adipose tissue activation. Importantly, pharmacologic, or genetic inhibition of brown adipose tissue thermogenesis prevented the elevated food intake triggered by KOR activation. Furthermore, our data reveal that KOR-mediated thermogenesis elevation is reversibly disrupted by chronic high-fat diet, implicating KOR signaling as a potential mediator in high-fat diet-induced weight gain.

16.
bioRxiv ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38105953

RESUMEN

Oxycodone is commonly prescribed for moderate to severe pain disorders. While efficacious, long-term use can result in tolerance, physical dependence, and the development of opioid use disorder. Cannabis and its derivatives such as Δ9-Tetrahydrocannabinol (Δ9-THC) have been reported to enhance oxycodone analgesia in animal models and in humans. However, it remains unclear if Δ9-THC may facilitate unwanted aspects of oxycodone intake, such as tolerance, dependence, and reward at analgesic doses. This study sought to evaluate the impact of co-administration of Δ9-THC and oxycodone across behavioral measures related to antinociception, dependence, circadian activity, and reward in both male and female mice. Oxycodone and Δ9-THC produced dose-dependent antinociceptive effects in the hotplate assay that were similar between sexes. Repeated treatment (twice daily for 5 days) resulted in antinociceptive tolerance. Combination treatment of oxycodone and Δ9-THC produced a greater antinociceptive effect than either administered alone, and delayed the development of antinociceptive tolerance. Repeated treatment with oxycodone produced physical dependence and alterations in circadian activity, neither of which were exacerbated by co-treatment with Δ9-THC. Combination treatment of oxycodone and Δ9-THC produced CPP when co-administered at doses that did not produce preference when administered alone. These data indicate that Δ9-THC may facilitate oxycodone-induced antinociception without augmenting certain unwanted features of opioid intake (e.g. dependence, circadian rhythm alterations). However, our findings also indicate that Δ9-THC may facilitate rewarding properties of oxycodone at therapeutically relevant doses which warrant consideration when evaluating this combination for its potential therapeutic utility.

17.
Neuron ; 111(18): 2899-2917.e6, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37442130

RESUMEN

Motivated behaviors are often studied in isolation to assess labeled lines of neural connections underlying innate actions. However, in nature, multiple systems compete for expression of goal-directed behaviors via complex neural networks. Here, we examined flexible survival decisions in animals tasked with food seeking under predation threat. We found that predator exposure rapidly induced physiological, neuronal, and behavioral adaptations in mice highlighted by reduced food seeking and consumption contingent on current threat level. Diminishing conflict via internal state or external environment perturbations shifted feeding strategies. Predator introduction and/or selective manipulation of danger-responsive cholecystokinin (Cck) cells of the dorsal premammilary nucleus (PMd) suppressed hunger-sensitive Agouti-related peptide (AgRP) neurons, providing a mechanism for threat-evoked hypophagia. Increased caloric need enhanced food seeking under duress through AgRP pathways to the bed nucleus of the stria terminalis (BNST) and/or lateral hypothalamus (LH). Our results suggest oscillating interactions between systems underlying self-preservation and food seeking to promote optimal behavior.


Asunto(s)
Hipotálamo , Neuronas , Ratones , Animales , Proteína Relacionada con Agouti/metabolismo , Hipotálamo/metabolismo , Neuronas/fisiología , Hambre/fisiología , Área Hipotalámica Lateral/fisiología
18.
Nat Metab ; 5(5): 789-803, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37231250

RESUMEN

Torpor is an energy-conserving state in which animals dramatically decrease their metabolic rate and body temperature to survive harsh environmental conditions. Here, we report the noninvasive, precise and safe induction of a torpor-like hypothermic and hypometabolic state in rodents by remote transcranial ultrasound stimulation at the hypothalamus preoptic area (POA). We achieve a long-lasting (>24 h) torpor-like state in mice via closed-loop feedback control of ultrasound stimulation with automated detection of body temperature. Ultrasound-induced hypothermia and hypometabolism (UIH) is triggered by activation of POA neurons, involves the dorsomedial hypothalamus as a downstream brain region and subsequent inhibition of thermogenic brown adipose tissue. Single-nucleus RNA-sequencing of POA neurons reveals TRPM2 as an ultrasound-sensitive ion channel, the knockdown of which suppresses UIH. We also demonstrate that UIH is feasible in a non-torpid animal, the rat. Our findings establish UIH as a promising technology for the noninvasive and safe induction of a torpor-like state.


Asunto(s)
Hipotermia , Canales Catiónicos TRPM , Letargo , Ratas , Ratones , Animales , Roedores , Hipotermia/inducido químicamente , Letargo/fisiología , Temperatura Corporal/fisiología , Encéfalo , Canales Catiónicos TRPM/efectos adversos
19.
Nat Commun ; 14(1): 6099, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773161

RESUMEN

Mitochondrial morphology, which is controlled by mitochondrial fission and fusion, is an important regulator of the thermogenic capacity of brown adipocytes. Adipose-specific peroxisome deficiency impairs thermogenesis by inhibiting cold-induced mitochondrial fission due to decreased mitochondrial membrane content of the peroxisome-derived lipids called plasmalogens. Here, we identify TMEM135 as a critical mediator of the peroxisomal regulation of mitochondrial fission and thermogenesis. Adipose-specific TMEM135 knockout in mice blocks mitochondrial fission, impairs thermogenesis, and increases diet-induced obesity and insulin resistance. Conversely, TMEM135 overexpression promotes mitochondrial division, counteracts obesity and insulin resistance, and rescues thermogenesis in peroxisome-deficient mice. Mechanistically, thermogenic stimuli promote association between peroxisomes and mitochondria and plasmalogen-dependent localization of TMEM135 in mitochondria, where it mediates PKA-dependent phosphorylation and mitochondrial retention of the fission factor Drp1. Together, these results reveal a previously unrecognized inter-organelle communication regulating mitochondrial fission and energy homeostasis and identify TMEM135 as a potential target for therapeutic activation of BAT.


Asunto(s)
Tejido Adiposo Pardo , Resistencia a la Insulina , Animales , Ratones , Adipocitos Marrones , Tejido Adiposo Pardo/fisiología , Homeostasis , Ratones Noqueados , Dinámicas Mitocondriales , Obesidad , Peroxisomas , Termogénesis
20.
Biol Psychiatry ; 93(6): 512-523, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36494220

RESUMEN

BACKGROUND: Obesity is a chronic relapsing disorder that is caused by an excess of caloric intake relative to energy expenditure. There is growing recognition that food motivation is altered in people with obesity. However, it remains unclear how brain circuits that control food motivation are altered in obese animals. METHODS: Using a novel behavioral assay that quantifies work during food seeking, in vivo and ex vivo cell-specific recordings, and a synaptic blocking technique, we tested the hypothesis that activity of circuits promoting appetitive behavior in the core of the nucleus accumbens (NAc) is enhanced in the obese state, particularly during food seeking. RESULTS: We first confirmed that mice made obese with ad libitum exposure to a high fat diet work harder than lean mice to obtain food, consistent with an increase in food motivation in obese mice. We observed greater activation of D1 receptor-expressing NAc spiny projection neurons (NAc D1SPNs) during food seeking in obese mice relative to lean mice. This enhanced activity was not observed in D2 receptor-expressing neurons (D2SPNs). Consistent with these in vivo findings, both intrinsic excitability and excitatory drive onto D1SPNs were enhanced in obese mice relative to lean mice, and these measures were selective for D1SPNs. Finally, blocking synaptic transmission from D1SPNs, but not D2SPNs, in the NAc core decreased physical work during food seeking and, critically, attenuated high fat diet-induced weight gain. CONCLUSIONS: These experiments demonstrate the necessity of NAc core D1SPNs in food motivation and the development of diet-induced obesity, establishing these neurons as a potential therapeutic target for preventing obesity.


Asunto(s)
Motivación , Núcleo Accumbens , Ratones , Animales , Núcleo Accumbens/fisiología , Ratones Obesos , Neuronas/fisiología , Obesidad , Receptores de Dopamina D1/metabolismo , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA